#undef WIN32_LEAN_AND_MEAN #include #include #include #include #include #include #include #include #include #include #include #define NDEBUG #include #define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */ #define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */ #define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */ static BOOL PATH_PathToRegion(const GdiPath *pPath, INT nPolyFillMode, HRGN *pHrgn); static void PATH_EmptyPath(GdiPath *pPath); static BOOL PATH_AddEntry(GdiPath *pPath, const POINT *pPoint, BYTE flags); static BOOL PATH_ReserveEntries(GdiPath *pPath, INT numEntries); static BOOL PATH_GetPathFromHDC(HDC hdc, GdiPath **ppPath); static BOOL PATH_DoArcPart(GdiPath *pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BOOL addMoveTo); static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x, double y, POINT *pPoint); static void PATH_NormalizePoint(FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY); BOOL STDCALL W32kAbortPath(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kBeginPath(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kCloseFigure(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kEndPath(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kFillPath(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kFlattenPath(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kGetMiterLimit(HDC hDC, PFLOAT Limit) { UNIMPLEMENTED; } INT STDCALL W32kGetPath(HDC hDC, LPPOINT Points, LPBYTE Types, INT nSize) { UNIMPLEMENTED; } HRGN STDCALL W32kPathToRegion(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kSetMiterLimit(HDC hDC, FLOAT NewLimit, PFLOAT OldLimit) { UNIMPLEMENTED; } BOOL STDCALL W32kStrokeAndFillPath(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kStrokePath(HDC hDC) { UNIMPLEMENTED; } BOOL STDCALL W32kWidenPath(HDC hDC) { UNIMPLEMENTED; } /*********************************************************************** * Exported functions */ /* PATH_InitGdiPath * * Initializes the GdiPath structure. */ void PATH_InitGdiPath(GdiPath *pPath) { assert(pPath!=NULL); pPath->state=PATH_Null; pPath->pPoints=NULL; pPath->pFlags=NULL; pPath->numEntriesUsed=0; pPath->numEntriesAllocated=0; } /* PATH_DestroyGdiPath * * Destroys a GdiPath structure (frees the memory in the arrays). */ void PATH_DestroyGdiPath(GdiPath *pPath) { assert(pPath!=NULL); ExFreePool(pPath->pPoints); ExFreePool(pPath->pFlags); } /* PATH_AssignGdiPath * * Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is * performed, i.e. the contents of the pPoints and pFlags arrays are copied, * not just the pointers. Since this means that the arrays in pPathDest may * need to be resized, pPathDest should have been initialized using * PATH_InitGdiPath (in C++, this function would be an assignment operator, * not a copy constructor). * Returns TRUE if successful, else FALSE. */ BOOL PATH_AssignGdiPath(GdiPath *pPathDest, const GdiPath *pPathSrc) { assert(pPathDest!=NULL && pPathSrc!=NULL); /* Make sure destination arrays are big enough */ if(!PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed)) return FALSE; /* Perform the copy operation */ memcpy(pPathDest->pPoints, pPathSrc->pPoints, sizeof(POINT)*pPathSrc->numEntriesUsed); memcpy(pPathDest->pFlags, pPathSrc->pFlags, sizeof(BYTE)*pPathSrc->numEntriesUsed); pPathDest->state=pPathSrc->state; pPathDest->numEntriesUsed=pPathSrc->numEntriesUsed; pPathDest->newStroke=pPathSrc->newStroke; return TRUE; } /* PATH_MoveTo * * Should be called when a MoveTo is performed on a DC that has an * open path. This starts a new stroke. Returns TRUE if successful, else * FALSE. */ BOOL PATH_MoveTo(HDC hdc) { GdiPath *pPath; /* Get pointer to path */ if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) /* FIXME: Do we have to call SetLastError? */ return FALSE; /* Start a new stroke */ pPath->newStroke=TRUE; return TRUE; } /* PATH_LineTo * * Should be called when a LineTo is performed on a DC that has an * open path. This adds a PT_LINETO entry to the path (and possibly * a PT_MOVETO entry, if this is the first LineTo in a stroke). * Returns TRUE if successful, else FALSE. */ BOOL PATH_LineTo(HDC hdc, INT x, INT y) { GdiPath *pPath; POINT point, pointCurPos; /* Get pointer to path */ if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Convert point to device coordinates */ point.x=x; point.y=y; if(!W32kLPtoDP(hdc, &point, 1)) return FALSE; /* Add a PT_MOVETO if necessary */ if(pPath->newStroke) { pPath->newStroke=FALSE; if(!W32kGetCurrentPositionEx(hdc, &pointCurPos) || !W32kLPtoDP(hdc, &pointCurPos, 1)) return FALSE; if(!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO)) return FALSE; } /* Add a PT_LINETO entry */ return PATH_AddEntry(pPath, &point, PT_LINETO); } /* PATH_Rectangle * * Should be called when a call to Rectangle is performed on a DC that has * an open path. Returns TRUE if successful, else FALSE. */ BOOL PATH_Rectangle(HDC hdc, INT x1, INT y1, INT x2, INT y2) { GdiPath *pPath; POINT corners[2], pointTemp; INT temp; /* Get pointer to path */ if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Convert points to device coordinates */ corners[0].x=x1; corners[0].y=y1; corners[1].x=x2; corners[1].y=y2; if(!W32kLPtoDP(hdc, corners, 2)) return FALSE; /* Make sure first corner is top left and second corner is bottom right */ if(corners[0].x>corners[1].x) { temp=corners[0].x; corners[0].x=corners[1].x; corners[1].x=temp; } if(corners[0].y>corners[1].y) { temp=corners[0].y; corners[0].y=corners[1].y; corners[1].y=temp; } /* In GM_COMPATIBLE, don't include bottom and right edges */ if(W32kGetGraphicsMode(hdc)==GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } /* Close any previous figure */ if(!W32kCloseFigure(hdc)) { /* The W32kCloseFigure call shouldn't have failed */ assert(FALSE); return FALSE; } /* Add four points to the path */ pointTemp.x=corners[1].x; pointTemp.y=corners[0].y; if(!PATH_AddEntry(pPath, &pointTemp, PT_MOVETO)) return FALSE; if(!PATH_AddEntry(pPath, corners, PT_LINETO)) return FALSE; pointTemp.x=corners[0].x; pointTemp.y=corners[1].y; if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) return FALSE; if(!PATH_AddEntry(pPath, corners+1, PT_LINETO)) return FALSE; /* Close the rectangle figure */ if(!W32kCloseFigure(hdc)) { /* The W32kCloseFigure call shouldn't have failed */ assert(FALSE); return FALSE; } return TRUE; } /* PATH_Ellipse * * Should be called when a call to Ellipse is performed on a DC that has * an open path. This adds four Bezier splines representing the ellipse * to the path. Returns TRUE if successful, else FALSE. */ BOOL PATH_Ellipse(HDC hdc, INT x1, INT y1, INT x2, INT y2) { /* TODO: This should probably be revised to call PATH_AngleArc */ /* (once it exists) */ return PATH_Arc(hdc, x1, y1, x2, y2, x1, (y1+y2)/2, x1, (y1+y2)/2); } /* PATH_Arc * * Should be called when a call to Arc is performed on a DC that has * an open path. This adds up to five Bezier splines representing the arc * to the path. Returns TRUE if successful, else FALSE. */ BOOL PATH_Arc(HDC hdc, INT x1, INT y1, INT x2, INT y2, INT xStart, INT yStart, INT xEnd, INT yEnd) { GdiPath *pPath; DC *pDC; double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0; /* Initialize angleEndQuadrant to silence gcc's warning */ double x, y; FLOAT_POINT corners[2], pointStart, pointEnd; BOOL start, end; INT temp; /* FIXME: This function should check for all possible error returns */ /* FIXME: Do we have to respect newStroke? */ /* Get pointer to DC */ pDC=DC_HandleToPtr(hdc); if(pDC==NULL) return FALSE; /* Get pointer to path */ if(!PATH_GetPathFromHDC(hdc, &pPath)){ DC_ReleasePtr( hdc ); return FALSE; } /* Check that path is open */ if(pPath->state!=PATH_Open){ DC_ReleasePtr( hdc ); return FALSE; } /* FIXME: Do we have to close the current figure? */ /* Check for zero height / width */ /* FIXME: Only in GM_COMPATIBLE? */ if(x1==x2 || y1==y2){ DC_ReleasePtr( hdc ); return TRUE; } /* Convert points to device coordinates */ corners[0].x=(FLOAT)x1; corners[0].y=(FLOAT)y1; corners[1].x=(FLOAT)x2; corners[1].y=(FLOAT)y2; pointStart.x=(FLOAT)xStart; pointStart.y=(FLOAT)yStart; pointEnd.x=(FLOAT)xEnd; pointEnd.y=(FLOAT)yEnd; INTERNAL_LPTODP_FLOAT(pDC, corners); INTERNAL_LPTODP_FLOAT(pDC, corners+1); INTERNAL_LPTODP_FLOAT(pDC, &pointStart); INTERNAL_LPTODP_FLOAT(pDC, &pointEnd); /* Make sure first corner is top left and second corner is bottom right */ if(corners[0].x>corners[1].x) { temp=corners[0].x; corners[0].x=corners[1].x; corners[1].x=temp; } if(corners[0].y>corners[1].y) { temp=corners[0].y; corners[0].y=corners[1].y; corners[1].y=temp; } /* Compute start and end angle */ PATH_NormalizePoint(corners, &pointStart, &x, &y); angleStart=atan2(y, x); PATH_NormalizePoint(corners, &pointEnd, &x, &y); angleEnd=atan2(y, x); /* Make sure the end angle is "on the right side" of the start angle */ if(W32kGetArcDirection(hdc)==AD_CLOCKWISE) { if(angleEnd<=angleStart) { angleEnd+=2*M_PI; assert(angleEnd>=angleStart); } } else { if(angleEnd>=angleStart) { angleEnd-=2*M_PI; assert(angleEnd<=angleStart); } } /* In GM_COMPATIBLE, don't include bottom and right edges */ if(W32kGetGraphicsMode(hdc)==GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } /* Add the arc to the path with one Bezier spline per quadrant that the * arc spans */ start=TRUE; end=FALSE; do { /* Determine the start and end angles for this quadrant */ if(start) { angleStartQuadrant=angleStart; if(W32kGetArcDirection(hdc)==AD_CLOCKWISE) angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2; else angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2; } else { angleStartQuadrant=angleEndQuadrant; if(W32kGetArcDirection(hdc)==AD_CLOCKWISE) angleEndQuadrant+=M_PI_2; else angleEndQuadrant-=M_PI_2; } /* Have we reached the last part of the arc? */ if((W32kGetArcDirection(hdc)==AD_CLOCKWISE && angleEndangleEndQuadrant)) { /* Adjust the end angle for this quadrant */ angleEndQuadrant=angleEnd; end=TRUE; } /* Add the Bezier spline to the path */ PATH_DoArcPart(pPath, corners, angleStartQuadrant, angleEndQuadrant, start); start=FALSE; } while(!end); DC_ReleasePtr( hdc ); return TRUE; } BOOL PATH_PolyBezierTo(HDC hdc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath; POINT pt; INT i; if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Add a PT_MOVETO if necessary */ if(pPath->newStroke) { pPath->newStroke=FALSE; if(!W32kGetCurrentPositionEx(hdc, &pt) || !W32kLPtoDP(hdc, &pt, 1)) return FALSE; if(!PATH_AddEntry(pPath, &pt, PT_MOVETO)) return FALSE; } for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!W32kLPtoDP(hdc, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, PT_BEZIERTO); } return TRUE; } BOOL PATH_PolyBezier(HDC hdc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath; POINT pt; INT i; if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!W32kLPtoDP(hdc, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO); } return TRUE; } BOOL PATH_Polyline(HDC hdc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath; POINT pt; INT i; if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!W32kLPtoDP(hdc, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO); } return TRUE; } BOOL PATH_PolylineTo(HDC hdc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath; POINT pt; INT i; if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Add a PT_MOVETO if necessary */ if(pPath->newStroke) { pPath->newStroke=FALSE; if(!W32kGetCurrentPositionEx(hdc, &pt) || !W32kLPtoDP(hdc, &pt, 1)) return FALSE; if(!PATH_AddEntry(pPath, &pt, PT_MOVETO)) return FALSE; } for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!W32kLPtoDP(hdc, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, PT_LINETO); } return TRUE; } BOOL PATH_Polygon(HDC hdc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath; POINT pt; INT i; if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!W32kLPtoDP(hdc, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : ((i == cbPoints-1) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO)); } return TRUE; } BOOL PATH_PolyPolygon( HDC hdc, const POINT* pts, const INT* counts, UINT polygons ) { GdiPath *pPath; POINT pt, startpt; INT poly, point, i; if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0, poly = 0; poly < polygons; poly++) { for(point = 0; point < counts[poly]; point++, i++) { pt = pts[i]; if(!W32kLPtoDP(hdc, &pt, 1)) return FALSE; if(point == 0) startpt = pt; PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO); } /* win98 adds an extra line to close the figure for some reason */ PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE); } return TRUE; } BOOL PATH_PolyPolyline( HDC hdc, const POINT* pts, const DWORD* counts, DWORD polylines ) { GdiPath *pPath; POINT pt; INT poly, point, i; if(!PATH_GetPathFromHDC(hdc, &pPath)) return FALSE; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0, poly = 0; poly < polylines; poly++) { for(point = 0; point < counts[poly]; point++, i++) { pt = pts[i]; if(!W32kLPtoDP(hdc, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO); } } return TRUE; } /*********************************************************************** * Internal functions */ /* PATH_AddFlatBezier * */ static BOOL PATH_AddFlatBezier(GdiPath *pPath, POINT *pt, BOOL closed) { POINT *pts; INT no, i; pts = GDI_Bezier( pt, 4, &no ); if(!pts) return FALSE; for(i = 1; i < no; i++) PATH_AddEntry(pPath, &pts[i], (i == no-1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO); ExFreePool(pts); return TRUE; } /* PATH_FlattenPath * * Replaces Beziers with line segments * */ static BOOL PATH_FlattenPath(GdiPath *pPath) { GdiPath newPath; INT srcpt; memset(&newPath, 0, sizeof(newPath)); newPath.state = PATH_Open; for(srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) { switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) { case PT_MOVETO: case PT_LINETO: PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]); break; case PT_BEZIERTO: PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt-1], pPath->pFlags[srcpt+2] & PT_CLOSEFIGURE); srcpt += 2; break; } } newPath.state = PATH_Closed; PATH_AssignGdiPath(pPath, &newPath); PATH_EmptyPath(&newPath); return TRUE; } /* PATH_PathToRegion * * Creates a region from the specified path using the specified polygon * filling mode. The path is left unchanged. A handle to the region that * was created is stored in *pHrgn. If successful, TRUE is returned; if an * error occurs, SetLastError is called with the appropriate value and * FALSE is returned. */ static BOOL PATH_PathToRegion(const GdiPath *pPath, INT nPolyFillMode, HRGN *pHrgn) { int numStrokes, iStroke, i; INT *pNumPointsInStroke; HRGN hrgn; assert(pPath!=NULL); assert(pHrgn!=NULL); PATH_FlattenPath(pPath); /* FIXME: What happens when number of points is zero? */ /* First pass: Find out how many strokes there are in the path */ /* FIXME: We could eliminate this with some bookkeeping in GdiPath */ numStrokes=0; for(i=0; inumEntriesUsed; i++) if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO) numStrokes++; /* Allocate memory for number-of-points-in-stroke array */ pNumPointsInStroke=(int *)ExAllocatePool(NonPagedPool, sizeof(int) * numStrokes); if(!pNumPointsInStroke) { // SetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } /* Second pass: remember number of points in each polygon */ iStroke=-1; /* Will get incremented to 0 at beginning of first stroke */ for(i=0; inumEntriesUsed; i++) { /* Is this the beginning of a new stroke? */ if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO) { iStroke++; pNumPointsInStroke[iStroke]=0; } pNumPointsInStroke[iStroke]++; } /* Create a region from the strokes */ /* hrgn=CreatePolyPolygonRgn(pPath->pPoints, pNumPointsInStroke, numStrokes, nPolyFillMode); FIXME: reinclude when region code implemented */ if(hrgn==(HRGN)0) { // SetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } /* Free memory for number-of-points-in-stroke array */ ExFreePool(pNumPointsInStroke); /* Success! */ *pHrgn=hrgn; return TRUE; } /* PATH_EmptyPath * * Removes all entries from the path and sets the path state to PATH_Null. */ static void PATH_EmptyPath(GdiPath *pPath) { assert(pPath!=NULL); pPath->state=PATH_Null; pPath->numEntriesUsed=0; } /* PATH_AddEntry * * Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO * or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if * successful, FALSE otherwise (e.g. if not enough memory was available). */ BOOL PATH_AddEntry(GdiPath *pPath, const POINT *pPoint, BYTE flags) { assert(pPath!=NULL); /* FIXME: If newStroke is true, perhaps we want to check that we're * getting a PT_MOVETO */ /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Reserve enough memory for an extra path entry */ if(!PATH_ReserveEntries(pPath, pPath->numEntriesUsed+1)) return FALSE; /* Store information in path entry */ pPath->pPoints[pPath->numEntriesUsed]=*pPoint; pPath->pFlags[pPath->numEntriesUsed]=flags; /* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */ if((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE) pPath->newStroke=TRUE; /* Increment entry count */ pPath->numEntriesUsed++; return TRUE; } /* PATH_ReserveEntries * * Ensures that at least "numEntries" entries (for points and flags) have * been allocated; allocates larger arrays and copies the existing entries * to those arrays, if necessary. Returns TRUE if successful, else FALSE. */ static BOOL PATH_ReserveEntries(GdiPath *pPath, INT numEntries) { INT numEntriesToAllocate; POINT *pPointsNew; BYTE *pFlagsNew; assert(pPath!=NULL); assert(numEntries>=0); /* Do we have to allocate more memory? */ if(numEntries > pPath->numEntriesAllocated) { /* Find number of entries to allocate. We let the size of the array * grow exponentially, since that will guarantee linear time * complexity. */ if(pPath->numEntriesAllocated) { numEntriesToAllocate=pPath->numEntriesAllocated; while(numEntriesToAllocatepPoints) { assert(pPath->pFlags); memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed); memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed); ExFreePool(pPath->pPoints); ExFreePool(pPath->pFlags); } pPath->pPoints=pPointsNew; pPath->pFlags=pFlagsNew; pPath->numEntriesAllocated=numEntriesToAllocate; } return TRUE; } /* PATH_GetPathFromHDC * * Retrieves a pointer to the GdiPath structure contained in an HDC and * places it in *ppPath. TRUE is returned if successful, FALSE otherwise. */ static BOOL PATH_GetPathFromHDC(HDC hdc, GdiPath **ppPath) { DC *pDC; pDC=DC_HandleToPtr(hdc); if(pDC) { *ppPath=&pDC->w.path; DC_ReleasePtr( hdc ); return TRUE; } return FALSE; } /* PATH_DoArcPart * * Creates a Bezier spline that corresponds to part of an arc and appends the * corresponding points to the path. The start and end angles are passed in * "angleStart" and "angleEnd"; these angles should span a quarter circle * at most. If "addMoveTo" is true, a PT_MOVETO entry for the first control * point is added to the path; otherwise, it is assumed that the current * position is equal to the first control point. */ static BOOL PATH_DoArcPart(GdiPath *pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BOOL addMoveTo) { double halfAngle, a; double xNorm[4], yNorm[4]; POINT point; int i; assert(fabs(angleEnd-angleStart)<=M_PI_2); /* FIXME: Is there an easier way of computing this? */ /* Compute control points */ halfAngle=(angleEnd-angleStart)/2.0; if(fabs(halfAngle)>1e-8) { a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle); xNorm[0]=cos(angleStart); yNorm[0]=sin(angleStart); xNorm[1]=xNorm[0] - a*yNorm[0]; yNorm[1]=yNorm[0] + a*xNorm[0]; xNorm[3]=cos(angleEnd); yNorm[3]=sin(angleEnd); xNorm[2]=xNorm[3] + a*yNorm[3]; yNorm[2]=yNorm[3] - a*xNorm[3]; } else for(i=0; i<4; i++) { xNorm[i]=cos(angleStart); yNorm[i]=sin(angleStart); } /* Add starting point to path if desired */ if(addMoveTo) { PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point); if(!PATH_AddEntry(pPath, &point, PT_MOVETO)) return FALSE; } /* Add remaining control points */ for(i=1; i<4; i++) { PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point); if(!PATH_AddEntry(pPath, &point, PT_BEZIERTO)) return FALSE; } return TRUE; } /* PATH_ScaleNormalizedPoint * * Scales a normalized point (x, y) with respect to the box whose corners are * passed in "corners". The point is stored in "*pPoint". The normalized * coordinates (-1.0, -1.0) correspond to corners[0], the coordinates * (1.0, 1.0) correspond to corners[1]. */ static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x, double y, POINT *pPoint) { pPoint->x=GDI_ROUND( (double)corners[0].x + (double)(corners[1].x-corners[0].x)*0.5*(x+1.0) ); pPoint->y=GDI_ROUND( (double)corners[0].y + (double)(corners[1].y-corners[0].y)*0.5*(y+1.0) ); } /* PATH_NormalizePoint * * Normalizes a point with respect to the box whose corners are passed in * corners. The normalized coordinates are stored in *pX and *pY. */ static void PATH_NormalizePoint(FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY) { *pX=(double)(pPoint->x-corners[0].x)/(double)(corners[1].x-corners[0].x) * 2.0 - 1.0; *pY=(double)(pPoint->y-corners[0].y)/(double)(corners[1].y-corners[0].y) * 2.0 - 1.0; }