9da7e9ecd114ea0540059621527b2456c70f3c00
[lldb.git] / clang / lib / AST / ItaniumMangle.cpp
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34
35 #define MANGLE_CHECKER 0
36
37 #if MANGLE_CHECKER
38 #include <cxxabi.h>
39 #endif
40
41 using namespace clang;
42
43 namespace {
44
45 /// Retrieve the declaration context that should be used when mangling the given
46 /// declaration.
47 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48   // The ABI assumes that lambda closure types that occur within 
49   // default arguments live in the context of the function. However, due to
50   // the way in which Clang parses and creates function declarations, this is
51   // not the case: the lambda closure type ends up living in the context 
52   // where the function itself resides, because the function declaration itself
53   // had not yet been created. Fix the context here.
54   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55     if (RD->isLambda())
56       if (ParmVarDecl *ContextParam
57             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58         return ContextParam->getDeclContext();
59   }
60
61   // Perform the same check for block literals.
62   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63     if (ParmVarDecl *ContextParam
64           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65       return ContextParam->getDeclContext();
66   }
67   
68   const DeclContext *DC = D->getDeclContext();
69   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70     return getEffectiveDeclContext(CD);
71
72   if (const auto *VD = dyn_cast<VarDecl>(D))
73     if (VD->isExternC())
74       return VD->getASTContext().getTranslationUnitDecl();
75
76   if (const auto *FD = dyn_cast<FunctionDecl>(D))
77     if (FD->isExternC())
78       return FD->getASTContext().getTranslationUnitDecl();
79
80   return DC;
81 }
82
83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84   return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86
87 static bool isLocalContainerContext(const DeclContext *DC) {
88   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90
91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92   const DeclContext *DC = getEffectiveDeclContext(D);
93   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94     if (isLocalContainerContext(DC))
95       return dyn_cast<RecordDecl>(D);
96     D = cast<Decl>(DC);
97     DC = getEffectiveDeclContext(D);
98   }
99   return nullptr;
100 }
101
102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104     return ftd->getTemplatedDecl();
105
106   return fn;
107 }
108
109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111   return (fn ? getStructor(fn) : decl);
112 }
113
114 static bool isLambda(const NamedDecl *ND) {
115   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116   if (!Record)
117     return false;
118
119   return Record->isLambda();
120 }
121
122 static const unsigned UnknownArity = ~0U;
123
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128
129 public:
130   explicit ItaniumMangleContextImpl(ASTContext &Context,
131                                     DiagnosticsEngine &Diags)
132       : ItaniumMangleContext(Context, Diags) {}
133
134   /// @name Mangler Entry Points
135   /// @{
136
137   bool shouldMangleCXXName(const NamedDecl *D) override;
138   bool shouldMangleStringLiteral(const StringLiteral *) override {
139     return false;
140   }
141   void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
142   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143                    raw_ostream &) override;
144   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145                           const ThisAdjustment &ThisAdjustment,
146                           raw_ostream &) override;
147   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
148                                 raw_ostream &) override;
149   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
150   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
151   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
152                            const CXXRecordDecl *Type, raw_ostream &) override;
153   void mangleCXXRTTI(QualType T, raw_ostream &) override;
154   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
155   void mangleTypeName(QualType T, raw_ostream &) override;
156   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
157                      raw_ostream &) override;
158   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
159                      raw_ostream &) override;
160
161   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
162   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
163   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
164   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
165   void mangleDynamicAtExitDestructor(const VarDecl *D,
166                                      raw_ostream &Out) override;
167   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
168                                  raw_ostream &Out) override;
169   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
170                              raw_ostream &Out) override;
171   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
172   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
173                                        raw_ostream &) override;
174
175   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
176
177   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
178     // Lambda closure types are already numbered.
179     if (isLambda(ND))
180       return false;
181
182     // Anonymous tags are already numbered.
183     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
184       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
185         return false;
186     }
187
188     // Use the canonical number for externally visible decls.
189     if (ND->isExternallyVisible()) {
190       unsigned discriminator = getASTContext().getManglingNumber(ND);
191       if (discriminator == 1)
192         return false;
193       disc = discriminator - 2;
194       return true;
195     }
196
197     // Make up a reasonable number for internal decls.
198     unsigned &discriminator = Uniquifier[ND];
199     if (!discriminator) {
200       const DeclContext *DC = getEffectiveDeclContext(ND);
201       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
202     }
203     if (discriminator == 1)
204       return false;
205     disc = discriminator-2;
206     return true;
207   }
208   /// @}
209 };
210
211 /// Manage the mangling of a single name.
212 class CXXNameMangler {
213   ItaniumMangleContextImpl &Context;
214   raw_ostream &Out;
215
216   /// The "structor" is the top-level declaration being mangled, if
217   /// that's not a template specialization; otherwise it's the pattern
218   /// for that specialization.
219   const NamedDecl *Structor;
220   unsigned StructorType;
221
222   /// The next substitution sequence number.
223   unsigned SeqID;
224
225   class FunctionTypeDepthState {
226     unsigned Bits;
227
228     enum { InResultTypeMask = 1 };
229
230   public:
231     FunctionTypeDepthState() : Bits(0) {}
232
233     /// The number of function types we're inside.
234     unsigned getDepth() const {
235       return Bits >> 1;
236     }
237
238     /// True if we're in the return type of the innermost function type.
239     bool isInResultType() const {
240       return Bits & InResultTypeMask;
241     }
242
243     FunctionTypeDepthState push() {
244       FunctionTypeDepthState tmp = *this;
245       Bits = (Bits & ~InResultTypeMask) + 2;
246       return tmp;
247     }
248
249     void enterResultType() {
250       Bits |= InResultTypeMask;
251     }
252
253     void leaveResultType() {
254       Bits &= ~InResultTypeMask;
255     }
256
257     void pop(FunctionTypeDepthState saved) {
258       assert(getDepth() == saved.getDepth() + 1);
259       Bits = saved.Bits;
260     }
261
262   } FunctionTypeDepth;
263
264   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
265
266   ASTContext &getASTContext() const { return Context.getASTContext(); }
267
268 public:
269   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
270                  const NamedDecl *D = nullptr)
271     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
272       SeqID(0) {
273     // These can't be mangled without a ctor type or dtor type.
274     assert(!D || (!isa<CXXDestructorDecl>(D) &&
275                   !isa<CXXConstructorDecl>(D)));
276   }
277   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
278                  const CXXConstructorDecl *D, CXXCtorType Type)
279     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
280       SeqID(0) { }
281   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
282                  const CXXDestructorDecl *D, CXXDtorType Type)
283     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
284       SeqID(0) { }
285
286 #if MANGLE_CHECKER
287   ~CXXNameMangler() {
288     if (Out.str()[0] == '\01')
289       return;
290
291     int status = 0;
292     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
293     assert(status == 0 && "Could not demangle mangled name!");
294     free(result);
295   }
296 #endif
297   raw_ostream &getStream() { return Out; }
298
299   void mangle(const NamedDecl *D);
300   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
301   void mangleNumber(const llvm::APSInt &I);
302   void mangleNumber(int64_t Number);
303   void mangleFloat(const llvm::APFloat &F);
304   void mangleFunctionEncoding(const FunctionDecl *FD);
305   void mangleSeqID(unsigned SeqID);
306   void mangleName(const NamedDecl *ND);
307   void mangleType(QualType T);
308   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
309   
310 private:
311
312   bool mangleSubstitution(const NamedDecl *ND);
313   bool mangleSubstitution(QualType T);
314   bool mangleSubstitution(TemplateName Template);
315   bool mangleSubstitution(uintptr_t Ptr);
316
317   void mangleExistingSubstitution(QualType type);
318   void mangleExistingSubstitution(TemplateName name);
319
320   bool mangleStandardSubstitution(const NamedDecl *ND);
321
322   void addSubstitution(const NamedDecl *ND) {
323     ND = cast<NamedDecl>(ND->getCanonicalDecl());
324
325     addSubstitution(reinterpret_cast<uintptr_t>(ND));
326   }
327   void addSubstitution(QualType T);
328   void addSubstitution(TemplateName Template);
329   void addSubstitution(uintptr_t Ptr);
330
331   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
332                               bool recursive = false);
333   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
334                             DeclarationName name,
335                             unsigned KnownArity = UnknownArity);
336
337   void mangleName(const TemplateDecl *TD,
338                   const TemplateArgument *TemplateArgs,
339                   unsigned NumTemplateArgs);
340   void mangleUnqualifiedName(const NamedDecl *ND) {
341     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
342   }
343   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
344                              unsigned KnownArity);
345   void mangleUnscopedName(const NamedDecl *ND);
346   void mangleUnscopedTemplateName(const TemplateDecl *ND);
347   void mangleUnscopedTemplateName(TemplateName);
348   void mangleSourceName(const IdentifierInfo *II);
349   void mangleLocalName(const Decl *D);
350   void mangleBlockForPrefix(const BlockDecl *Block);
351   void mangleUnqualifiedBlock(const BlockDecl *Block);
352   void mangleLambda(const CXXRecordDecl *Lambda);
353   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
354                         bool NoFunction=false);
355   void mangleNestedName(const TemplateDecl *TD,
356                         const TemplateArgument *TemplateArgs,
357                         unsigned NumTemplateArgs);
358   void manglePrefix(NestedNameSpecifier *qualifier);
359   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
360   void manglePrefix(QualType type);
361   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
362   void mangleTemplatePrefix(TemplateName Template);
363   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
364                                       StringRef Prefix = "");
365   void mangleOperatorName(DeclarationName Name, unsigned Arity);
366   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
367   void mangleQualifiers(Qualifiers Quals);
368   void mangleRefQualifier(RefQualifierKind RefQualifier);
369
370   void mangleObjCMethodName(const ObjCMethodDecl *MD);
371
372   // Declare manglers for every type class.
373 #define ABSTRACT_TYPE(CLASS, PARENT)
374 #define NON_CANONICAL_TYPE(CLASS, PARENT)
375 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
376 #include "clang/AST/TypeNodes.def"
377
378   void mangleType(const TagType*);
379   void mangleType(TemplateName);
380   void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType,
381                               const FunctionDecl *FD = nullptr);
382   void mangleNeonVectorType(const VectorType *T);
383   void mangleAArch64NeonVectorType(const VectorType *T);
384
385   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
386   void mangleMemberExprBase(const Expr *base, bool isArrow);
387   void mangleMemberExpr(const Expr *base, bool isArrow,
388                         NestedNameSpecifier *qualifier,
389                         NamedDecl *firstQualifierLookup,
390                         DeclarationName name,
391                         unsigned knownArity);
392   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
393   void mangleInitListElements(const InitListExpr *InitList);
394   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
395   void mangleCXXCtorType(CXXCtorType T);
396   void mangleCXXDtorType(CXXDtorType T);
397
398   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
399   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
400                           unsigned NumTemplateArgs);
401   void mangleTemplateArgs(const TemplateArgumentList &AL);
402   void mangleTemplateArg(TemplateArgument A);
403
404   void mangleTemplateParameter(unsigned Index);
405
406   void mangleFunctionParam(const ParmVarDecl *parm);
407 };
408
409 }
410
411 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
412   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
413   if (FD) {
414     LanguageLinkage L = FD->getLanguageLinkage();
415     // Overloadable functions need mangling.
416     if (FD->hasAttr<OverloadableAttr>())
417       return true;
418
419     // "main" is not mangled.
420     if (FD->isMain())
421       return false;
422
423     // C++ functions and those whose names are not a simple identifier need
424     // mangling.
425     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
426       return true;
427
428     // C functions are not mangled.
429     if (L == CLanguageLinkage)
430       return false;
431   }
432
433   // Otherwise, no mangling is done outside C++ mode.
434   if (!getASTContext().getLangOpts().CPlusPlus)
435     return false;
436
437   const VarDecl *VD = dyn_cast<VarDecl>(D);
438   if (VD) {
439     // C variables are not mangled.
440     if (VD->isExternC())
441       return false;
442
443     // Variables at global scope with non-internal linkage are not mangled
444     const DeclContext *DC = getEffectiveDeclContext(D);
445     // Check for extern variable declared locally.
446     if (DC->isFunctionOrMethod() && D->hasLinkage())
447       while (!DC->isNamespace() && !DC->isTranslationUnit())
448         DC = getEffectiveParentContext(DC);
449     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
450         !isa<VarTemplateSpecializationDecl>(D))
451       return false;
452   }
453
454   return true;
455 }
456
457 void CXXNameMangler::mangle(const NamedDecl *D) {
458   // <mangled-name> ::= _Z <encoding>
459   //            ::= <data name>
460   //            ::= <special-name>
461   Out << "_Z";
462   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
463     mangleFunctionEncoding(FD);
464   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
465     mangleName(VD);
466   else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
467     mangleName(IFD->getAnonField());
468   else
469     mangleName(cast<FieldDecl>(D));
470 }
471
472 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
473   // <encoding> ::= <function name> <bare-function-type>
474   mangleName(FD);
475
476   // Don't mangle in the type if this isn't a decl we should typically mangle.
477   if (!Context.shouldMangleDeclName(FD))
478     return;
479
480   if (FD->hasAttr<EnableIfAttr>()) {
481     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
482     Out << "Ua9enable_ifI";
483     // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
484     // it here.
485     for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
486                                          E = FD->getAttrs().rend();
487          I != E; ++I) {
488       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
489       if (!EIA)
490         continue;
491       Out << 'X';
492       mangleExpression(EIA->getCond());
493       Out << 'E';
494     }
495     Out << 'E';
496     FunctionTypeDepth.pop(Saved);
497   }
498
499   // Whether the mangling of a function type includes the return type depends on
500   // the context and the nature of the function. The rules for deciding whether
501   // the return type is included are:
502   //
503   //   1. Template functions (names or types) have return types encoded, with
504   //   the exceptions listed below.
505   //   2. Function types not appearing as part of a function name mangling,
506   //   e.g. parameters, pointer types, etc., have return type encoded, with the
507   //   exceptions listed below.
508   //   3. Non-template function names do not have return types encoded.
509   //
510   // The exceptions mentioned in (1) and (2) above, for which the return type is
511   // never included, are
512   //   1. Constructors.
513   //   2. Destructors.
514   //   3. Conversion operator functions, e.g. operator int.
515   bool MangleReturnType = false;
516   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
517     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
518           isa<CXXConversionDecl>(FD)))
519       MangleReturnType = true;
520
521     // Mangle the type of the primary template.
522     FD = PrimaryTemplate->getTemplatedDecl();
523   }
524
525   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), 
526                          MangleReturnType, FD);
527 }
528
529 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
530   while (isa<LinkageSpecDecl>(DC)) {
531     DC = getEffectiveParentContext(DC);
532   }
533
534   return DC;
535 }
536
537 /// Return whether a given namespace is the 'std' namespace.
538 static bool isStd(const NamespaceDecl *NS) {
539   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
540                                 ->isTranslationUnit())
541     return false;
542   
543   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
544   return II && II->isStr("std");
545 }
546
547 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
548 // namespace.
549 static bool isStdNamespace(const DeclContext *DC) {
550   if (!DC->isNamespace())
551     return false;
552
553   return isStd(cast<NamespaceDecl>(DC));
554 }
555
556 static const TemplateDecl *
557 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
558   // Check if we have a function template.
559   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
560     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
561       TemplateArgs = FD->getTemplateSpecializationArgs();
562       return TD;
563     }
564   }
565
566   // Check if we have a class template.
567   if (const ClassTemplateSpecializationDecl *Spec =
568         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
569     TemplateArgs = &Spec->getTemplateArgs();
570     return Spec->getSpecializedTemplate();
571   }
572
573   // Check if we have a variable template.
574   if (const VarTemplateSpecializationDecl *Spec =
575           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
576     TemplateArgs = &Spec->getTemplateArgs();
577     return Spec->getSpecializedTemplate();
578   }
579
580   return nullptr;
581 }
582
583 void CXXNameMangler::mangleName(const NamedDecl *ND) {
584   //  <name> ::= <nested-name>
585   //         ::= <unscoped-name>
586   //         ::= <unscoped-template-name> <template-args>
587   //         ::= <local-name>
588   //
589   const DeclContext *DC = getEffectiveDeclContext(ND);
590
591   // If this is an extern variable declared locally, the relevant DeclContext
592   // is that of the containing namespace, or the translation unit.
593   // FIXME: This is a hack; extern variables declared locally should have
594   // a proper semantic declaration context!
595   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
596     while (!DC->isNamespace() && !DC->isTranslationUnit())
597       DC = getEffectiveParentContext(DC);
598   else if (GetLocalClassDecl(ND)) {
599     mangleLocalName(ND);
600     return;
601   }
602
603   DC = IgnoreLinkageSpecDecls(DC);
604
605   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
606     // Check if we have a template.
607     const TemplateArgumentList *TemplateArgs = nullptr;
608     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
609       mangleUnscopedTemplateName(TD);
610       mangleTemplateArgs(*TemplateArgs);
611       return;
612     }
613
614     mangleUnscopedName(ND);
615     return;
616   }
617
618   if (isLocalContainerContext(DC)) {
619     mangleLocalName(ND);
620     return;
621   }
622
623   mangleNestedName(ND, DC);
624 }
625 void CXXNameMangler::mangleName(const TemplateDecl *TD,
626                                 const TemplateArgument *TemplateArgs,
627                                 unsigned NumTemplateArgs) {
628   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
629
630   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
631     mangleUnscopedTemplateName(TD);
632     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
633   } else {
634     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
635   }
636 }
637
638 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
639   //  <unscoped-name> ::= <unqualified-name>
640   //                  ::= St <unqualified-name>   # ::std::
641
642   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
643     Out << "St";
644
645   mangleUnqualifiedName(ND);
646 }
647
648 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
649   //     <unscoped-template-name> ::= <unscoped-name>
650   //                              ::= <substitution>
651   if (mangleSubstitution(ND))
652     return;
653
654   // <template-template-param> ::= <template-param>
655   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
656     mangleTemplateParameter(TTP->getIndex());
657   else
658     mangleUnscopedName(ND->getTemplatedDecl());
659
660   addSubstitution(ND);
661 }
662
663 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
664   //     <unscoped-template-name> ::= <unscoped-name>
665   //                              ::= <substitution>
666   if (TemplateDecl *TD = Template.getAsTemplateDecl())
667     return mangleUnscopedTemplateName(TD);
668   
669   if (mangleSubstitution(Template))
670     return;
671
672   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
673   assert(Dependent && "Not a dependent template name?");
674   if (const IdentifierInfo *Id = Dependent->getIdentifier())
675     mangleSourceName(Id);
676   else
677     mangleOperatorName(Dependent->getOperator(), UnknownArity);
678   
679   addSubstitution(Template);
680 }
681
682 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
683   // ABI:
684   //   Floating-point literals are encoded using a fixed-length
685   //   lowercase hexadecimal string corresponding to the internal
686   //   representation (IEEE on Itanium), high-order bytes first,
687   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
688   //   on Itanium.
689   // The 'without leading zeroes' thing seems to be an editorial
690   // mistake; see the discussion on cxx-abi-dev beginning on
691   // 2012-01-16.
692
693   // Our requirements here are just barely weird enough to justify
694   // using a custom algorithm instead of post-processing APInt::toString().
695
696   llvm::APInt valueBits = f.bitcastToAPInt();
697   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
698   assert(numCharacters != 0);
699
700   // Allocate a buffer of the right number of characters.
701   SmallVector<char, 20> buffer(numCharacters);
702
703   // Fill the buffer left-to-right.
704   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
705     // The bit-index of the next hex digit.
706     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
707
708     // Project out 4 bits starting at 'digitIndex'.
709     llvm::integerPart hexDigit
710       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
711     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
712     hexDigit &= 0xF;
713
714     // Map that over to a lowercase hex digit.
715     static const char charForHex[16] = {
716       '0', '1', '2', '3', '4', '5', '6', '7',
717       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
718     };
719     buffer[stringIndex] = charForHex[hexDigit];
720   }
721
722   Out.write(buffer.data(), numCharacters);
723 }
724
725 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
726   if (Value.isSigned() && Value.isNegative()) {
727     Out << 'n';
728     Value.abs().print(Out, /*signed*/ false);
729   } else {
730     Value.print(Out, /*signed*/ false);
731   }
732 }
733
734 void CXXNameMangler::mangleNumber(int64_t Number) {
735   //  <number> ::= [n] <non-negative decimal integer>
736   if (Number < 0) {
737     Out << 'n';
738     Number = -Number;
739   }
740
741   Out << Number;
742 }
743
744 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
745   //  <call-offset>  ::= h <nv-offset> _
746   //                 ::= v <v-offset> _
747   //  <nv-offset>    ::= <offset number>        # non-virtual base override
748   //  <v-offset>     ::= <offset number> _ <virtual offset number>
749   //                      # virtual base override, with vcall offset
750   if (!Virtual) {
751     Out << 'h';
752     mangleNumber(NonVirtual);
753     Out << '_';
754     return;
755   }
756
757   Out << 'v';
758   mangleNumber(NonVirtual);
759   Out << '_';
760   mangleNumber(Virtual);
761   Out << '_';
762 }
763
764 void CXXNameMangler::manglePrefix(QualType type) {
765   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
766     if (!mangleSubstitution(QualType(TST, 0))) {
767       mangleTemplatePrefix(TST->getTemplateName());
768         
769       // FIXME: GCC does not appear to mangle the template arguments when
770       // the template in question is a dependent template name. Should we
771       // emulate that badness?
772       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
773       addSubstitution(QualType(TST, 0));
774     }
775   } else if (const auto *DTST =
776                  type->getAs<DependentTemplateSpecializationType>()) {
777     if (!mangleSubstitution(QualType(DTST, 0))) {
778       TemplateName Template = getASTContext().getDependentTemplateName(
779           DTST->getQualifier(), DTST->getIdentifier());
780       mangleTemplatePrefix(Template);
781
782       // FIXME: GCC does not appear to mangle the template arguments when
783       // the template in question is a dependent template name. Should we
784       // emulate that badness?
785       mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
786       addSubstitution(QualType(DTST, 0));
787     }
788   } else {
789     // We use the QualType mangle type variant here because it handles
790     // substitutions.
791     mangleType(type);
792   }
793 }
794
795 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
796 ///
797 /// \param recursive - true if this is being called recursively,
798 ///   i.e. if there is more prefix "to the right".
799 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
800                                             bool recursive) {
801
802   // x, ::x
803   // <unresolved-name> ::= [gs] <base-unresolved-name>
804
805   // T::x / decltype(p)::x
806   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
807
808   // T::N::x /decltype(p)::N::x
809   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
810   //                       <base-unresolved-name>
811
812   // A::x, N::y, A<T>::z; "gs" means leading "::"
813   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
814   //                       <base-unresolved-name>
815
816   switch (qualifier->getKind()) {
817   case NestedNameSpecifier::Global:
818     Out << "gs";
819
820     // We want an 'sr' unless this is the entire NNS.
821     if (recursive)
822       Out << "sr";
823
824     // We never want an 'E' here.
825     return;
826
827   case NestedNameSpecifier::Super:
828     llvm_unreachable("Can't mangle __super specifier");
829
830   case NestedNameSpecifier::Namespace:
831     if (qualifier->getPrefix())
832       mangleUnresolvedPrefix(qualifier->getPrefix(),
833                              /*recursive*/ true);
834     else
835       Out << "sr";
836     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
837     break;
838   case NestedNameSpecifier::NamespaceAlias:
839     if (qualifier->getPrefix())
840       mangleUnresolvedPrefix(qualifier->getPrefix(),
841                              /*recursive*/ true);
842     else
843       Out << "sr";
844     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
845     break;
846
847   case NestedNameSpecifier::TypeSpec:
848   case NestedNameSpecifier::TypeSpecWithTemplate: {
849     const Type *type = qualifier->getAsType();
850
851     // We only want to use an unresolved-type encoding if this is one of:
852     //   - a decltype
853     //   - a template type parameter
854     //   - a template template parameter with arguments
855     // In all of these cases, we should have no prefix.
856     if (qualifier->getPrefix()) {
857       mangleUnresolvedPrefix(qualifier->getPrefix(),
858                              /*recursive*/ true);
859     } else {
860       // Otherwise, all the cases want this.
861       Out << "sr";
862     }
863
864     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
865       return;
866
867     break;
868   }
869
870   case NestedNameSpecifier::Identifier:
871     // Member expressions can have these without prefixes.
872     if (qualifier->getPrefix())
873       mangleUnresolvedPrefix(qualifier->getPrefix(),
874                              /*recursive*/ true);
875     else
876       Out << "sr";
877
878     mangleSourceName(qualifier->getAsIdentifier());
879     break;
880   }
881
882   // If this was the innermost part of the NNS, and we fell out to
883   // here, append an 'E'.
884   if (!recursive)
885     Out << 'E';
886 }
887
888 /// Mangle an unresolved-name, which is generally used for names which
889 /// weren't resolved to specific entities.
890 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
891                                           DeclarationName name,
892                                           unsigned knownArity) {
893   if (qualifier) mangleUnresolvedPrefix(qualifier);
894   switch (name.getNameKind()) {
895     // <base-unresolved-name> ::= <simple-id>
896     case DeclarationName::Identifier:
897       mangleSourceName(name.getAsIdentifierInfo());
898       break;
899     // <base-unresolved-name> ::= dn <destructor-name>
900     case DeclarationName::CXXDestructorName:
901       Out << "dn";
902       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
903       break;
904     // <base-unresolved-name> ::= on <operator-name>
905     case DeclarationName::CXXConversionFunctionName:
906     case DeclarationName::CXXLiteralOperatorName:
907     case DeclarationName::CXXOperatorName:
908       Out << "on";
909       mangleOperatorName(name, knownArity);
910       break;
911     case DeclarationName::CXXConstructorName:
912       llvm_unreachable("Can't mangle a constructor name!");
913     case DeclarationName::CXXUsingDirective:
914       llvm_unreachable("Can't mangle a using directive name!");
915     case DeclarationName::ObjCMultiArgSelector:
916     case DeclarationName::ObjCOneArgSelector:
917     case DeclarationName::ObjCZeroArgSelector:
918       llvm_unreachable("Can't mangle Objective-C selector names here!");
919   }
920 }
921
922 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
923                                            DeclarationName Name,
924                                            unsigned KnownArity) {
925   unsigned Arity = KnownArity;
926   //  <unqualified-name> ::= <operator-name>
927   //                     ::= <ctor-dtor-name>
928   //                     ::= <source-name>
929   switch (Name.getNameKind()) {
930   case DeclarationName::Identifier: {
931     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
932       // We must avoid conflicts between internally- and externally-
933       // linked variable and function declaration names in the same TU:
934       //   void test() { extern void foo(); }
935       //   static void foo();
936       // This naming convention is the same as that followed by GCC,
937       // though it shouldn't actually matter.
938       if (ND && ND->getFormalLinkage() == InternalLinkage &&
939           getEffectiveDeclContext(ND)->isFileContext())
940         Out << 'L';
941
942       mangleSourceName(II);
943       break;
944     }
945
946     // Otherwise, an anonymous entity.  We must have a declaration.
947     assert(ND && "mangling empty name without declaration");
948
949     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
950       if (NS->isAnonymousNamespace()) {
951         // This is how gcc mangles these names.
952         Out << "12_GLOBAL__N_1";
953         break;
954       }
955     }
956
957     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
958       // We must have an anonymous union or struct declaration.
959       const RecordDecl *RD =
960         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
961
962       // Itanium C++ ABI 5.1.2:
963       //
964       //   For the purposes of mangling, the name of an anonymous union is
965       //   considered to be the name of the first named data member found by a
966       //   pre-order, depth-first, declaration-order walk of the data members of
967       //   the anonymous union. If there is no such data member (i.e., if all of
968       //   the data members in the union are unnamed), then there is no way for
969       //   a program to refer to the anonymous union, and there is therefore no
970       //   need to mangle its name.
971       assert(RD->isAnonymousStructOrUnion()
972              && "Expected anonymous struct or union!");
973       const FieldDecl *FD = RD->findFirstNamedDataMember();
974
975       // It's actually possible for various reasons for us to get here
976       // with an empty anonymous struct / union.  Fortunately, it
977       // doesn't really matter what name we generate.
978       if (!FD) break;
979       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
980
981       mangleSourceName(FD->getIdentifier());
982       break;
983     }
984
985     // Class extensions have no name as a category, and it's possible
986     // for them to be the semantic parent of certain declarations
987     // (primarily, tag decls defined within declarations).  Such
988     // declarations will always have internal linkage, so the name
989     // doesn't really matter, but we shouldn't crash on them.  For
990     // safety, just handle all ObjC containers here.
991     if (isa<ObjCContainerDecl>(ND))
992       break;
993     
994     // We must have an anonymous struct.
995     const TagDecl *TD = cast<TagDecl>(ND);
996     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
997       assert(TD->getDeclContext() == D->getDeclContext() &&
998              "Typedef should not be in another decl context!");
999       assert(D->getDeclName().getAsIdentifierInfo() &&
1000              "Typedef was not named!");
1001       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1002       break;
1003     }
1004
1005     // <unnamed-type-name> ::= <closure-type-name>
1006     // 
1007     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1008     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1009     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1010       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1011         mangleLambda(Record);
1012         break;
1013       }
1014     }
1015
1016     if (TD->isExternallyVisible()) {
1017       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1018       Out << "Ut";
1019       if (UnnamedMangle > 1)
1020         Out << llvm::utostr(UnnamedMangle - 2);
1021       Out << '_';
1022       break;
1023     }
1024
1025     // Get a unique id for the anonymous struct.
1026     unsigned AnonStructId = Context.getAnonymousStructId(TD);
1027
1028     // Mangle it as a source name in the form
1029     // [n] $_<id>
1030     // where n is the length of the string.
1031     SmallString<8> Str;
1032     Str += "$_";
1033     Str += llvm::utostr(AnonStructId);
1034
1035     Out << Str.size();
1036     Out << Str;
1037     break;
1038   }
1039
1040   case DeclarationName::ObjCZeroArgSelector:
1041   case DeclarationName::ObjCOneArgSelector:
1042   case DeclarationName::ObjCMultiArgSelector:
1043     llvm_unreachable("Can't mangle Objective-C selector names here!");
1044
1045   case DeclarationName::CXXConstructorName:
1046     if (ND == Structor)
1047       // If the named decl is the C++ constructor we're mangling, use the type
1048       // we were given.
1049       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1050     else
1051       // Otherwise, use the complete constructor name. This is relevant if a
1052       // class with a constructor is declared within a constructor.
1053       mangleCXXCtorType(Ctor_Complete);
1054     break;
1055
1056   case DeclarationName::CXXDestructorName:
1057     if (ND == Structor)
1058       // If the named decl is the C++ destructor we're mangling, use the type we
1059       // were given.
1060       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1061     else
1062       // Otherwise, use the complete destructor name. This is relevant if a
1063       // class with a destructor is declared within a destructor.
1064       mangleCXXDtorType(Dtor_Complete);
1065     break;
1066
1067   case DeclarationName::CXXOperatorName:
1068     if (ND && Arity == UnknownArity) {
1069       Arity = cast<FunctionDecl>(ND)->getNumParams();
1070
1071       // If we have a member function, we need to include the 'this' pointer.
1072       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1073         if (!MD->isStatic())
1074           Arity++;
1075     }
1076   // FALLTHROUGH
1077   case DeclarationName::CXXConversionFunctionName:
1078   case DeclarationName::CXXLiteralOperatorName:
1079     mangleOperatorName(Name, Arity);
1080     break;
1081
1082   case DeclarationName::CXXUsingDirective:
1083     llvm_unreachable("Can't mangle a using directive name!");
1084   }
1085 }
1086
1087 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1088   // <source-name> ::= <positive length number> <identifier>
1089   // <number> ::= [n] <non-negative decimal integer>
1090   // <identifier> ::= <unqualified source code identifier>
1091   Out << II->getLength() << II->getName();
1092 }
1093
1094 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1095                                       const DeclContext *DC,
1096                                       bool NoFunction) {
1097   // <nested-name> 
1098   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1099   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 
1100   //       <template-args> E
1101
1102   Out << 'N';
1103   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1104     Qualifiers MethodQuals =
1105         Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1106     // We do not consider restrict a distinguishing attribute for overloading
1107     // purposes so we must not mangle it.
1108     MethodQuals.removeRestrict();
1109     mangleQualifiers(MethodQuals);
1110     mangleRefQualifier(Method->getRefQualifier());
1111   }
1112   
1113   // Check if we have a template.
1114   const TemplateArgumentList *TemplateArgs = nullptr;
1115   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1116     mangleTemplatePrefix(TD, NoFunction);
1117     mangleTemplateArgs(*TemplateArgs);
1118   }
1119   else {
1120     manglePrefix(DC, NoFunction);
1121     mangleUnqualifiedName(ND);
1122   }
1123
1124   Out << 'E';
1125 }
1126 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1127                                       const TemplateArgument *TemplateArgs,
1128                                       unsigned NumTemplateArgs) {
1129   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1130
1131   Out << 'N';
1132
1133   mangleTemplatePrefix(TD);
1134   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1135
1136   Out << 'E';
1137 }
1138
1139 void CXXNameMangler::mangleLocalName(const Decl *D) {
1140   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1141   //              := Z <function encoding> E s [<discriminator>]
1142   // <local-name> := Z <function encoding> E d [ <parameter number> ] 
1143   //                 _ <entity name>
1144   // <discriminator> := _ <non-negative number>
1145   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1146   const RecordDecl *RD = GetLocalClassDecl(D);
1147   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1148
1149   Out << 'Z';
1150
1151   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1152     mangleObjCMethodName(MD);
1153   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1154     mangleBlockForPrefix(BD);
1155   else
1156     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1157
1158   Out << 'E';
1159
1160   if (RD) {
1161     // The parameter number is omitted for the last parameter, 0 for the 
1162     // second-to-last parameter, 1 for the third-to-last parameter, etc. The 
1163     // <entity name> will of course contain a <closure-type-name>: Its 
1164     // numbering will be local to the particular argument in which it appears
1165     // -- other default arguments do not affect its encoding.
1166     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1167     if (CXXRD->isLambda()) {
1168       if (const ParmVarDecl *Parm
1169               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1170         if (const FunctionDecl *Func
1171               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1172           Out << 'd';
1173           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1174           if (Num > 1)
1175             mangleNumber(Num - 2);
1176           Out << '_';
1177         }
1178       }
1179     }
1180     
1181     // Mangle the name relative to the closest enclosing function.
1182     // equality ok because RD derived from ND above
1183     if (D == RD)  {
1184       mangleUnqualifiedName(RD);
1185     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1186       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1187       mangleUnqualifiedBlock(BD);
1188     } else {
1189       const NamedDecl *ND = cast<NamedDecl>(D);
1190       mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1191     }
1192   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1193     // Mangle a block in a default parameter; see above explanation for
1194     // lambdas.
1195     if (const ParmVarDecl *Parm
1196             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1197       if (const FunctionDecl *Func
1198             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1199         Out << 'd';
1200         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1201         if (Num > 1)
1202           mangleNumber(Num - 2);
1203         Out << '_';
1204       }
1205     }
1206
1207     mangleUnqualifiedBlock(BD);
1208   } else {
1209     mangleUnqualifiedName(cast<NamedDecl>(D));
1210   }
1211
1212   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1213     unsigned disc;
1214     if (Context.getNextDiscriminator(ND, disc)) {
1215       if (disc < 10)
1216         Out << '_' << disc;
1217       else
1218         Out << "__" << disc << '_';
1219     }
1220   }
1221 }
1222
1223 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1224   if (GetLocalClassDecl(Block)) {
1225     mangleLocalName(Block);
1226     return;
1227   }
1228   const DeclContext *DC = getEffectiveDeclContext(Block);
1229   if (isLocalContainerContext(DC)) {
1230     mangleLocalName(Block);
1231     return;
1232   }
1233   manglePrefix(getEffectiveDeclContext(Block));
1234   mangleUnqualifiedBlock(Block);
1235 }
1236
1237 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1238   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1239     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1240         Context->getDeclContext()->isRecord()) {
1241       if (const IdentifierInfo *Name
1242             = cast<NamedDecl>(Context)->getIdentifier()) {
1243         mangleSourceName(Name);
1244         Out << 'M';            
1245       }
1246     }
1247   }
1248
1249   // If we have a block mangling number, use it.
1250   unsigned Number = Block->getBlockManglingNumber();
1251   // Otherwise, just make up a number. It doesn't matter what it is because
1252   // the symbol in question isn't externally visible.
1253   if (!Number)
1254     Number = Context.getBlockId(Block, false);
1255   Out << "Ub";
1256   if (Number > 0)
1257     Out << Number - 1;
1258   Out << '_';
1259 }
1260
1261 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1262   // If the context of a closure type is an initializer for a class member 
1263   // (static or nonstatic), it is encoded in a qualified name with a final 
1264   // <prefix> of the form:
1265   //
1266   //   <data-member-prefix> := <member source-name> M
1267   //
1268   // Technically, the data-member-prefix is part of the <prefix>. However,
1269   // since a closure type will always be mangled with a prefix, it's easier
1270   // to emit that last part of the prefix here.
1271   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1272     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1273         Context->getDeclContext()->isRecord()) {
1274       if (const IdentifierInfo *Name
1275             = cast<NamedDecl>(Context)->getIdentifier()) {
1276         mangleSourceName(Name);
1277         Out << 'M';            
1278       }
1279     }
1280   }
1281
1282   Out << "Ul";
1283   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1284                                    getAs<FunctionProtoType>();
1285   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1286                          Lambda->getLambdaStaticInvoker());
1287   Out << "E";
1288   
1289   // The number is omitted for the first closure type with a given 
1290   // <lambda-sig> in a given context; it is n-2 for the nth closure type 
1291   // (in lexical order) with that same <lambda-sig> and context.
1292   //
1293   // The AST keeps track of the number for us.
1294   unsigned Number = Lambda->getLambdaManglingNumber();
1295   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1296   if (Number > 1)
1297     mangleNumber(Number - 2);
1298   Out << '_';  
1299 }
1300
1301 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1302   switch (qualifier->getKind()) {
1303   case NestedNameSpecifier::Global:
1304     // nothing
1305     return;
1306
1307   case NestedNameSpecifier::Super:
1308     llvm_unreachable("Can't mangle __super specifier");
1309
1310   case NestedNameSpecifier::Namespace:
1311     mangleName(qualifier->getAsNamespace());
1312     return;
1313
1314   case NestedNameSpecifier::NamespaceAlias:
1315     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1316     return;
1317
1318   case NestedNameSpecifier::TypeSpec:
1319   case NestedNameSpecifier::TypeSpecWithTemplate:
1320     manglePrefix(QualType(qualifier->getAsType(), 0));
1321     return;
1322
1323   case NestedNameSpecifier::Identifier:
1324     // Member expressions can have these without prefixes, but that
1325     // should end up in mangleUnresolvedPrefix instead.
1326     assert(qualifier->getPrefix());
1327     manglePrefix(qualifier->getPrefix());
1328
1329     mangleSourceName(qualifier->getAsIdentifier());
1330     return;
1331   }
1332
1333   llvm_unreachable("unexpected nested name specifier");
1334 }
1335
1336 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1337   //  <prefix> ::= <prefix> <unqualified-name>
1338   //           ::= <template-prefix> <template-args>
1339   //           ::= <template-param>
1340   //           ::= # empty
1341   //           ::= <substitution>
1342
1343   DC = IgnoreLinkageSpecDecls(DC);
1344
1345   if (DC->isTranslationUnit())
1346     return;
1347
1348   if (NoFunction && isLocalContainerContext(DC))
1349     return;
1350
1351   assert(!isLocalContainerContext(DC));
1352
1353   const NamedDecl *ND = cast<NamedDecl>(DC);  
1354   if (mangleSubstitution(ND))
1355     return;
1356   
1357   // Check if we have a template.
1358   const TemplateArgumentList *TemplateArgs = nullptr;
1359   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1360     mangleTemplatePrefix(TD);
1361     mangleTemplateArgs(*TemplateArgs);
1362   } else {
1363     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1364     mangleUnqualifiedName(ND);
1365   }
1366
1367   addSubstitution(ND);
1368 }
1369
1370 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1371   // <template-prefix> ::= <prefix> <template unqualified-name>
1372   //                   ::= <template-param>
1373   //                   ::= <substitution>
1374   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1375     return mangleTemplatePrefix(TD);
1376
1377   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1378     manglePrefix(Qualified->getQualifier());
1379   
1380   if (OverloadedTemplateStorage *Overloaded
1381                                       = Template.getAsOverloadedTemplate()) {
1382     mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1383                           UnknownArity);
1384     return;
1385   }
1386    
1387   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1388   assert(Dependent && "Unknown template name kind?");
1389   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1390     manglePrefix(Qualifier);
1391   mangleUnscopedTemplateName(Template);
1392 }
1393
1394 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1395                                           bool NoFunction) {
1396   // <template-prefix> ::= <prefix> <template unqualified-name>
1397   //                   ::= <template-param>
1398   //                   ::= <substitution>
1399   // <template-template-param> ::= <template-param>
1400   //                               <substitution>
1401
1402   if (mangleSubstitution(ND))
1403     return;
1404
1405   // <template-template-param> ::= <template-param>
1406   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1407     mangleTemplateParameter(TTP->getIndex());
1408   } else {
1409     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1410     mangleUnqualifiedName(ND->getTemplatedDecl());
1411   }
1412
1413   addSubstitution(ND);
1414 }
1415
1416 /// Mangles a template name under the production <type>.  Required for
1417 /// template template arguments.
1418 ///   <type> ::= <class-enum-type>
1419 ///          ::= <template-param>
1420 ///          ::= <substitution>
1421 void CXXNameMangler::mangleType(TemplateName TN) {
1422   if (mangleSubstitution(TN))
1423     return;
1424
1425   TemplateDecl *TD = nullptr;
1426
1427   switch (TN.getKind()) {
1428   case TemplateName::QualifiedTemplate:
1429     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1430     goto HaveDecl;
1431
1432   case TemplateName::Template:
1433     TD = TN.getAsTemplateDecl();
1434     goto HaveDecl;
1435
1436   HaveDecl:
1437     if (isa<TemplateTemplateParmDecl>(TD))
1438       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1439     else
1440       mangleName(TD);
1441     break;
1442
1443   case TemplateName::OverloadedTemplate:
1444     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1445
1446   case TemplateName::DependentTemplate: {
1447     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1448     assert(Dependent->isIdentifier());
1449
1450     // <class-enum-type> ::= <name>
1451     // <name> ::= <nested-name>
1452     mangleUnresolvedPrefix(Dependent->getQualifier());
1453     mangleSourceName(Dependent->getIdentifier());
1454     break;
1455   }
1456
1457   case TemplateName::SubstTemplateTemplateParm: {
1458     // Substituted template parameters are mangled as the substituted
1459     // template.  This will check for the substitution twice, which is
1460     // fine, but we have to return early so that we don't try to *add*
1461     // the substitution twice.
1462     SubstTemplateTemplateParmStorage *subst
1463       = TN.getAsSubstTemplateTemplateParm();
1464     mangleType(subst->getReplacement());
1465     return;
1466   }
1467
1468   case TemplateName::SubstTemplateTemplateParmPack: {
1469     // FIXME: not clear how to mangle this!
1470     // template <template <class> class T...> class A {
1471     //   template <template <class> class U...> void foo(B<T,U> x...);
1472     // };
1473     Out << "_SUBSTPACK_";
1474     break;
1475   }
1476   }
1477
1478   addSubstitution(TN);
1479 }
1480
1481 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1482                                                     StringRef Prefix) {
1483   // Only certain other types are valid as prefixes;  enumerate them.
1484   switch (Ty->getTypeClass()) {
1485   case Type::Builtin:
1486   case Type::Complex:
1487   case Type::Adjusted:
1488   case Type::Decayed:
1489   case Type::Pointer:
1490   case Type::BlockPointer:
1491   case Type::LValueReference:
1492   case Type::RValueReference:
1493   case Type::MemberPointer:
1494   case Type::ConstantArray:
1495   case Type::IncompleteArray:
1496   case Type::VariableArray:
1497   case Type::DependentSizedArray:
1498   case Type::DependentSizedExtVector:
1499   case Type::Vector:
1500   case Type::ExtVector:
1501   case Type::FunctionProto:
1502   case Type::FunctionNoProto:
1503   case Type::Paren:
1504   case Type::Attributed:
1505   case Type::Auto:
1506   case Type::PackExpansion:
1507   case Type::ObjCObject:
1508   case Type::ObjCInterface:
1509   case Type::ObjCObjectPointer:
1510   case Type::Atomic:
1511     llvm_unreachable("type is illegal as a nested name specifier");
1512
1513   case Type::SubstTemplateTypeParmPack:
1514     // FIXME: not clear how to mangle this!
1515     // template <class T...> class A {
1516     //   template <class U...> void foo(decltype(T::foo(U())) x...);
1517     // };
1518     Out << "_SUBSTPACK_";
1519     break;
1520
1521   // <unresolved-type> ::= <template-param>
1522   //                   ::= <decltype>
1523   //                   ::= <template-template-param> <template-args>
1524   // (this last is not official yet)
1525   case Type::TypeOfExpr:
1526   case Type::TypeOf:
1527   case Type::Decltype:
1528   case Type::TemplateTypeParm:
1529   case Type::UnaryTransform:
1530   case Type::SubstTemplateTypeParm:
1531   unresolvedType:
1532     // Some callers want a prefix before the mangled type.
1533     Out << Prefix;
1534
1535     // This seems to do everything we want.  It's not really
1536     // sanctioned for a substituted template parameter, though.
1537     mangleType(Ty);
1538
1539     // We never want to print 'E' directly after an unresolved-type,
1540     // so we return directly.
1541     return true;
1542
1543   case Type::Typedef:
1544     mangleSourceName(cast<TypedefType>(Ty)->getDecl()->getIdentifier());
1545     break;
1546
1547   case Type::UnresolvedUsing:
1548     mangleSourceName(
1549         cast<UnresolvedUsingType>(Ty)->getDecl()->getIdentifier());
1550     break;
1551
1552   case Type::Enum:
1553   case Type::Record:
1554     mangleSourceName(cast<TagType>(Ty)->getDecl()->getIdentifier());
1555     break;
1556
1557   case Type::TemplateSpecialization: {
1558     const TemplateSpecializationType *TST =
1559         cast<TemplateSpecializationType>(Ty);
1560     TemplateName TN = TST->getTemplateName();
1561     switch (TN.getKind()) {
1562     case TemplateName::Template:
1563     case TemplateName::QualifiedTemplate: {
1564       TemplateDecl *TD = TN.getAsTemplateDecl();
1565
1566       // If the base is a template template parameter, this is an
1567       // unresolved type.
1568       assert(TD && "no template for template specialization type");
1569       if (isa<TemplateTemplateParmDecl>(TD))
1570         goto unresolvedType;
1571
1572       mangleSourceName(TD->getIdentifier());
1573       break;
1574     }
1575
1576     case TemplateName::OverloadedTemplate:
1577     case TemplateName::DependentTemplate:
1578       llvm_unreachable("invalid base for a template specialization type");
1579
1580     case TemplateName::SubstTemplateTemplateParm: {
1581       SubstTemplateTemplateParmStorage *subst =
1582           TN.getAsSubstTemplateTemplateParm();
1583       mangleExistingSubstitution(subst->getReplacement());
1584       break;
1585     }
1586
1587     case TemplateName::SubstTemplateTemplateParmPack: {
1588       // FIXME: not clear how to mangle this!
1589       // template <template <class U> class T...> class A {
1590       //   template <class U...> void foo(decltype(T<U>::foo) x...);
1591       // };
1592       Out << "_SUBSTPACK_";
1593       break;
1594     }
1595     }
1596
1597     mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1598     break;
1599   }
1600
1601   case Type::InjectedClassName:
1602     mangleSourceName(
1603         cast<InjectedClassNameType>(Ty)->getDecl()->getIdentifier());
1604     break;
1605
1606   case Type::DependentName:
1607     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
1608     break;
1609
1610   case Type::DependentTemplateSpecialization: {
1611     const DependentTemplateSpecializationType *DTST =
1612         cast<DependentTemplateSpecializationType>(Ty);
1613     mangleSourceName(DTST->getIdentifier());
1614     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1615     break;
1616   }
1617
1618   case Type::Elaborated:
1619     return mangleUnresolvedTypeOrSimpleId(
1620         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
1621   }
1622
1623   return false;
1624 }
1625
1626 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
1627   switch (Name.getNameKind()) {
1628   case DeclarationName::CXXConstructorName:
1629   case DeclarationName::CXXDestructorName:
1630   case DeclarationName::CXXUsingDirective:
1631   case DeclarationName::Identifier:
1632   case DeclarationName::ObjCMultiArgSelector:
1633   case DeclarationName::ObjCOneArgSelector:
1634   case DeclarationName::ObjCZeroArgSelector:
1635     llvm_unreachable("Not an operator name");
1636
1637   case DeclarationName::CXXConversionFunctionName:
1638     // <operator-name> ::= cv <type>    # (cast)
1639     Out << "cv";
1640     mangleType(Name.getCXXNameType());
1641     break;
1642
1643   case DeclarationName::CXXLiteralOperatorName:
1644     Out << "li";
1645     mangleSourceName(Name.getCXXLiteralIdentifier());
1646     return;
1647
1648   case DeclarationName::CXXOperatorName:
1649     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1650     break;
1651   }
1652 }
1653
1654
1655
1656 void
1657 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1658   switch (OO) {
1659   // <operator-name> ::= nw     # new
1660   case OO_New: Out << "nw"; break;
1661   //              ::= na        # new[]
1662   case OO_Array_New: Out << "na"; break;
1663   //              ::= dl        # delete
1664   case OO_Delete: Out << "dl"; break;
1665   //              ::= da        # delete[]
1666   case OO_Array_Delete: Out << "da"; break;
1667   //              ::= ps        # + (unary)
1668   //              ::= pl        # + (binary or unknown)
1669   case OO_Plus:
1670     Out << (Arity == 1? "ps" : "pl"); break;
1671   //              ::= ng        # - (unary)
1672   //              ::= mi        # - (binary or unknown)
1673   case OO_Minus:
1674     Out << (Arity == 1? "ng" : "mi"); break;
1675   //              ::= ad        # & (unary)
1676   //              ::= an        # & (binary or unknown)
1677   case OO_Amp:
1678     Out << (Arity == 1? "ad" : "an"); break;
1679   //              ::= de        # * (unary)
1680   //              ::= ml        # * (binary or unknown)
1681   case OO_Star:
1682     // Use binary when unknown.
1683     Out << (Arity == 1? "de" : "ml"); break;
1684   //              ::= co        # ~
1685   case OO_Tilde: Out << "co"; break;
1686   //              ::= dv        # /
1687   case OO_Slash: Out << "dv"; break;
1688   //              ::= rm        # %
1689   case OO_Percent: Out << "rm"; break;
1690   //              ::= or        # |
1691   case OO_Pipe: Out << "or"; break;
1692   //              ::= eo        # ^
1693   case OO_Caret: Out << "eo"; break;
1694   //              ::= aS        # =
1695   case OO_Equal: Out << "aS"; break;
1696   //              ::= pL        # +=
1697   case OO_PlusEqual: Out << "pL"; break;
1698   //              ::= mI        # -=
1699   case OO_MinusEqual: Out << "mI"; break;
1700   //              ::= mL        # *=
1701   case OO_StarEqual: Out << "mL"; break;
1702   //              ::= dV        # /=
1703   case OO_SlashEqual: Out << "dV"; break;
1704   //              ::= rM        # %=
1705   case OO_PercentEqual: Out << "rM"; break;
1706   //              ::= aN        # &=
1707   case OO_AmpEqual: Out << "aN"; break;
1708   //              ::= oR        # |=
1709   case OO_PipeEqual: Out << "oR"; break;
1710   //              ::= eO        # ^=
1711   case OO_CaretEqual: Out << "eO"; break;
1712   //              ::= ls        # <<
1713   case OO_LessLess: Out << "ls"; break;
1714   //              ::= rs        # >>
1715   case OO_GreaterGreater: Out << "rs"; break;
1716   //              ::= lS        # <<=
1717   case OO_LessLessEqual: Out << "lS"; break;
1718   //              ::= rS        # >>=
1719   case OO_GreaterGreaterEqual: Out << "rS"; break;
1720   //              ::= eq        # ==
1721   case OO_EqualEqual: Out << "eq"; break;
1722   //              ::= ne        # !=
1723   case OO_ExclaimEqual: Out << "ne"; break;
1724   //              ::= lt        # <
1725   case OO_Less: Out << "lt"; break;
1726   //              ::= gt        # >
1727   case OO_Greater: Out << "gt"; break;
1728   //              ::= le        # <=
1729   case OO_LessEqual: Out << "le"; break;
1730   //              ::= ge        # >=
1731   case OO_GreaterEqual: Out << "ge"; break;
1732   //              ::= nt        # !
1733   case OO_Exclaim: Out << "nt"; break;
1734   //              ::= aa        # &&
1735   case OO_AmpAmp: Out << "aa"; break;
1736   //              ::= oo        # ||
1737   case OO_PipePipe: Out << "oo"; break;
1738   //              ::= pp        # ++
1739   case OO_PlusPlus: Out << "pp"; break;
1740   //              ::= mm        # --
1741   case OO_MinusMinus: Out << "mm"; break;
1742   //              ::= cm        # ,
1743   case OO_Comma: Out << "cm"; break;
1744   //              ::= pm        # ->*
1745   case OO_ArrowStar: Out << "pm"; break;
1746   //              ::= pt        # ->
1747   case OO_Arrow: Out << "pt"; break;
1748   //              ::= cl        # ()
1749   case OO_Call: Out << "cl"; break;
1750   //              ::= ix        # []
1751   case OO_Subscript: Out << "ix"; break;
1752
1753   //              ::= qu        # ?
1754   // The conditional operator can't be overloaded, but we still handle it when
1755   // mangling expressions.
1756   case OO_Conditional: Out << "qu"; break;
1757   // Proposal on cxx-abi-dev, 2015-10-21.
1758   //              ::= aw        # co_await
1759   case OO_Coawait: Out << "aw"; break;
1760
1761   case OO_None:
1762   case NUM_OVERLOADED_OPERATORS:
1763     llvm_unreachable("Not an overloaded operator");
1764   }
1765 }
1766
1767 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1768   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1769   if (Quals.hasRestrict())
1770     Out << 'r';
1771   if (Quals.hasVolatile())
1772     Out << 'V';
1773   if (Quals.hasConst())
1774     Out << 'K';
1775
1776   if (Quals.hasAddressSpace()) {
1777     // Address space extension:
1778     //
1779     //   <type> ::= U <target-addrspace>
1780     //   <type> ::= U <OpenCL-addrspace>
1781     //   <type> ::= U <CUDA-addrspace>
1782
1783     SmallString<64> ASString;
1784     unsigned AS = Quals.getAddressSpace();
1785
1786     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1787       //  <target-addrspace> ::= "AS" <address-space-number>
1788       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1789       ASString = "AS" + llvm::utostr_32(TargetAS);
1790     } else {
1791       switch (AS) {
1792       default: llvm_unreachable("Not a language specific address space");
1793       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1794       case LangAS::opencl_global:   ASString = "CLglobal";   break;
1795       case LangAS::opencl_local:    ASString = "CLlocal";    break;
1796       case LangAS::opencl_constant: ASString = "CLconstant"; break;
1797       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1798       case LangAS::cuda_device:     ASString = "CUdevice";   break;
1799       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1800       case LangAS::cuda_shared:     ASString = "CUshared";   break;
1801       }
1802     }
1803     Out << 'U' << ASString.size() << ASString;
1804   }
1805   
1806   StringRef LifetimeName;
1807   switch (Quals.getObjCLifetime()) {
1808   // Objective-C ARC Extension:
1809   //
1810   //   <type> ::= U "__strong"
1811   //   <type> ::= U "__weak"
1812   //   <type> ::= U "__autoreleasing"
1813   case Qualifiers::OCL_None:
1814     break;
1815     
1816   case Qualifiers::OCL_Weak:
1817     LifetimeName = "__weak";
1818     break;
1819     
1820   case Qualifiers::OCL_Strong:
1821     LifetimeName = "__strong";
1822     break;
1823     
1824   case Qualifiers::OCL_Autoreleasing:
1825     LifetimeName = "__autoreleasing";
1826     break;
1827     
1828   case Qualifiers::OCL_ExplicitNone:
1829     // The __unsafe_unretained qualifier is *not* mangled, so that
1830     // __unsafe_unretained types in ARC produce the same manglings as the
1831     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1832     // better ABI compatibility.
1833     //
1834     // It's safe to do this because unqualified 'id' won't show up
1835     // in any type signatures that need to be mangled.
1836     break;
1837   }
1838   if (!LifetimeName.empty())
1839     Out << 'U' << LifetimeName.size() << LifetimeName;
1840 }
1841
1842 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1843   // <ref-qualifier> ::= R                # lvalue reference
1844   //                 ::= O                # rvalue-reference
1845   switch (RefQualifier) {
1846   case RQ_None:
1847     break;
1848       
1849   case RQ_LValue:
1850     Out << 'R';
1851     break;
1852       
1853   case RQ_RValue:
1854     Out << 'O';
1855     break;
1856   }
1857 }
1858
1859 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1860   Context.mangleObjCMethodName(MD, Out);
1861 }
1862
1863 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
1864   if (Quals)
1865     return true;
1866   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
1867     return true;
1868   if (Ty->isOpenCLSpecificType())
1869     return true;
1870   if (Ty->isBuiltinType())
1871     return false;
1872
1873   return true;
1874 }
1875
1876 void CXXNameMangler::mangleType(QualType T) {
1877   // If our type is instantiation-dependent but not dependent, we mangle
1878   // it as it was written in the source, removing any top-level sugar. 
1879   // Otherwise, use the canonical type.
1880   //
1881   // FIXME: This is an approximation of the instantiation-dependent name 
1882   // mangling rules, since we should really be using the type as written and
1883   // augmented via semantic analysis (i.e., with implicit conversions and
1884   // default template arguments) for any instantiation-dependent type. 
1885   // Unfortunately, that requires several changes to our AST:
1886   //   - Instantiation-dependent TemplateSpecializationTypes will need to be 
1887   //     uniqued, so that we can handle substitutions properly
1888   //   - Default template arguments will need to be represented in the
1889   //     TemplateSpecializationType, since they need to be mangled even though
1890   //     they aren't written.
1891   //   - Conversions on non-type template arguments need to be expressed, since
1892   //     they can affect the mangling of sizeof/alignof.
1893   if (!T->isInstantiationDependentType() || T->isDependentType())
1894     T = T.getCanonicalType();
1895   else {
1896     // Desugar any types that are purely sugar.
1897     do {
1898       // Don't desugar through template specialization types that aren't
1899       // type aliases. We need to mangle the template arguments as written.
1900       if (const TemplateSpecializationType *TST 
1901                                       = dyn_cast<TemplateSpecializationType>(T))
1902         if (!TST->isTypeAlias())
1903           break;
1904
1905       QualType Desugared 
1906         = T.getSingleStepDesugaredType(Context.getASTContext());
1907       if (Desugared == T)
1908         break;
1909       
1910       T = Desugared;
1911     } while (true);
1912   }
1913   SplitQualType split = T.split();
1914   Qualifiers quals = split.Quals;
1915   const Type *ty = split.Ty;
1916
1917   bool isSubstitutable = isTypeSubstitutable(quals, ty);
1918   if (isSubstitutable && mangleSubstitution(T))
1919     return;
1920
1921   // If we're mangling a qualified array type, push the qualifiers to
1922   // the element type.
1923   if (quals && isa<ArrayType>(T)) {
1924     ty = Context.getASTContext().getAsArrayType(T);
1925     quals = Qualifiers();
1926
1927     // Note that we don't update T: we want to add the
1928     // substitution at the original type.
1929   }
1930
1931   if (quals) {
1932     mangleQualifiers(quals);
1933     // Recurse:  even if the qualified type isn't yet substitutable,
1934     // the unqualified type might be.
1935     mangleType(QualType(ty, 0));
1936   } else {
1937     switch (ty->getTypeClass()) {
1938 #define ABSTRACT_TYPE(CLASS, PARENT)
1939 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1940     case Type::CLASS: \
1941       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1942       return;
1943 #define TYPE(CLASS, PARENT) \
1944     case Type::CLASS: \
1945       mangleType(static_cast<const CLASS##Type*>(ty)); \
1946       break;
1947 #include "clang/AST/TypeNodes.def"
1948     }
1949   }
1950
1951   // Add the substitution.
1952   if (isSubstitutable)
1953     addSubstitution(T);
1954 }
1955
1956 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1957   if (!mangleStandardSubstitution(ND))
1958     mangleName(ND);
1959 }
1960
1961 void CXXNameMangler::mangleType(const BuiltinType *T) {
1962   //  <type>         ::= <builtin-type>
1963   //  <builtin-type> ::= v  # void
1964   //                 ::= w  # wchar_t
1965   //                 ::= b  # bool
1966   //                 ::= c  # char
1967   //                 ::= a  # signed char
1968   //                 ::= h  # unsigned char
1969   //                 ::= s  # short
1970   //                 ::= t  # unsigned short
1971   //                 ::= i  # int
1972   //                 ::= j  # unsigned int
1973   //                 ::= l  # long
1974   //                 ::= m  # unsigned long
1975   //                 ::= x  # long long, __int64
1976   //                 ::= y  # unsigned long long, __int64
1977   //                 ::= n  # __int128
1978   //                 ::= o  # unsigned __int128
1979   //                 ::= f  # float
1980   //                 ::= d  # double
1981   //                 ::= e  # long double, __float80
1982   // UNSUPPORTED:    ::= g  # __float128
1983   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1984   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1985   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1986   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1987   //                 ::= Di # char32_t
1988   //                 ::= Ds # char16_t
1989   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1990   //                 ::= u <source-name>    # vendor extended type
1991   switch (T->getKind()) {
1992   case BuiltinType::Void:
1993     Out << 'v';
1994     break;
1995   case BuiltinType::Bool:
1996     Out << 'b';
1997     break;
1998   case BuiltinType::Char_U:
1999   case BuiltinType::Char_S:
2000     Out << 'c';
2001     break;
2002   case BuiltinType::UChar:
2003     Out << 'h';
2004     break;
2005   case BuiltinType::UShort:
2006     Out << 't';
2007     break;
2008   case BuiltinType::UInt:
2009     Out << 'j';
2010     break;
2011   case BuiltinType::ULong:
2012     Out << 'm';
2013     break;
2014   case BuiltinType::ULongLong:
2015     Out << 'y';
2016     break;
2017   case BuiltinType::UInt128:
2018     Out << 'o';
2019     break;
2020   case BuiltinType::SChar:
2021     Out << 'a';
2022     break;
2023   case BuiltinType::WChar_S:
2024   case BuiltinType::WChar_U:
2025     Out << 'w';
2026     break;
2027   case BuiltinType::Char16:
2028     Out << "Ds";
2029     break;
2030   case BuiltinType::Char32:
2031     Out << "Di";
2032     break;
2033   case BuiltinType::Short:
2034     Out << 's';
2035     break;
2036   case BuiltinType::Int:
2037     Out << 'i';
2038     break;
2039   case BuiltinType::Long:
2040     Out << 'l';
2041     break;
2042   case BuiltinType::LongLong:
2043     Out << 'x';
2044     break;
2045   case BuiltinType::Int128:
2046     Out << 'n';
2047     break;
2048   case BuiltinType::Half:
2049     Out << "Dh";
2050     break;
2051   case BuiltinType::Float:
2052     Out << 'f';
2053     break;
2054   case BuiltinType::Double:
2055     Out << 'd';
2056     break;
2057   case BuiltinType::LongDouble:
2058     Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2059                 ? 'g'
2060                 : 'e');
2061     break;
2062   case BuiltinType::NullPtr:
2063     Out << "Dn";
2064     break;
2065
2066 #define BUILTIN_TYPE(Id, SingletonId)
2067 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2068   case BuiltinType::Id:
2069 #include "clang/AST/BuiltinTypes.def"
2070   case BuiltinType::Dependent:
2071     llvm_unreachable("mangling a placeholder type");
2072   case BuiltinType::ObjCId:
2073     Out << "11objc_object";
2074     break;
2075   case BuiltinType::ObjCClass:
2076     Out << "10objc_class";
2077     break;
2078   case BuiltinType::ObjCSel:
2079     Out << "13objc_selector";
2080     break;
2081   case BuiltinType::OCLImage1d:
2082     Out << "11ocl_image1d";
2083     break;
2084   case BuiltinType::OCLImage1dArray:
2085     Out << "16ocl_image1darray";
2086     break;
2087   case BuiltinType::OCLImage1dBuffer:
2088     Out << "17ocl_image1dbuffer";
2089     break;
2090   case BuiltinType::OCLImage2d:
2091     Out << "11ocl_image2d";
2092     break;
2093   case BuiltinType::OCLImage2dArray:
2094     Out << "16ocl_image2darray";
2095     break;
2096   case BuiltinType::OCLImage2dDepth:
2097     Out << "16ocl_image2ddepth";
2098     break;
2099   case BuiltinType::OCLImage2dArrayDepth:
2100     Out << "21ocl_image2darraydepth";
2101     break;
2102   case BuiltinType::OCLImage2dMSAA:
2103     Out << "15ocl_image2dmsaa";
2104     break;
2105   case BuiltinType::OCLImage2dArrayMSAA:
2106     Out << "20ocl_image2darraymsaa";
2107     break;
2108   case BuiltinType::OCLImage2dMSAADepth:
2109     Out << "20ocl_image2dmsaadepth";
2110     break;
2111   case BuiltinType::OCLImage2dArrayMSAADepth:
2112     Out << "35ocl_image2darraymsaadepth";
2113     break;
2114   case BuiltinType::OCLImage3d:
2115     Out << "11ocl_image3d";
2116     break;
2117   case BuiltinType::OCLSampler:
2118     Out << "11ocl_sampler";
2119     break;
2120   case BuiltinType::OCLEvent:
2121     Out << "9ocl_event";
2122     break;
2123   case BuiltinType::OCLClkEvent:
2124     Out << "12ocl_clkevent";
2125     break;
2126   case BuiltinType::OCLQueue:
2127     Out << "9ocl_queue";
2128     break;
2129   case BuiltinType::OCLNDRange:
2130     Out << "11ocl_ndrange";
2131     break;
2132   case BuiltinType::OCLReserveID:
2133     Out << "13ocl_reserveid";
2134     break;
2135   }
2136 }
2137
2138 // <type>          ::= <function-type>
2139 // <function-type> ::= [<CV-qualifiers>] F [Y]
2140 //                      <bare-function-type> [<ref-qualifier>] E
2141 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2142   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2143   // e.g. "const" in "int (A::*)() const".
2144   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2145
2146   Out << 'F';
2147
2148   // FIXME: We don't have enough information in the AST to produce the 'Y'
2149   // encoding for extern "C" function types.
2150   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2151
2152   // Mangle the ref-qualifier, if present.
2153   mangleRefQualifier(T->getRefQualifier());
2154
2155   Out << 'E';
2156 }
2157
2158 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2159   // Function types without prototypes can arise when mangling a function type
2160   // within an overloadable function in C. We mangle these as the absence of any
2161   // parameter types (not even an empty parameter list).
2162   Out << 'F';
2163
2164   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2165
2166   FunctionTypeDepth.enterResultType();
2167   mangleType(T->getReturnType());
2168   FunctionTypeDepth.leaveResultType();
2169
2170   FunctionTypeDepth.pop(saved);
2171   Out << 'E';
2172 }
2173
2174 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2175                                             bool MangleReturnType,
2176                                             const FunctionDecl *FD) {
2177   // We should never be mangling something without a prototype.
2178   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2179
2180   // Record that we're in a function type.  See mangleFunctionParam
2181   // for details on what we're trying to achieve here.
2182   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2183
2184   // <bare-function-type> ::= <signature type>+
2185   if (MangleReturnType) {
2186     FunctionTypeDepth.enterResultType();
2187     mangleType(Proto->getReturnType());
2188     FunctionTypeDepth.leaveResultType();
2189   }
2190
2191   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2192     //   <builtin-type> ::= v   # void
2193     Out << 'v';
2194
2195     FunctionTypeDepth.pop(saved);
2196     return;
2197   }
2198
2199   assert(!FD || FD->getNumParams() == Proto->getNumParams());
2200   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2201     const auto &ParamTy = Proto->getParamType(I);
2202     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2203
2204     if (FD) {
2205       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2206         // Attr can only take 1 character, so we can hardcode the length below.
2207         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2208         Out << "U17pass_object_size" << Attr->getType();
2209       }
2210     }
2211   }
2212
2213   FunctionTypeDepth.pop(saved);
2214
2215   // <builtin-type>      ::= z  # ellipsis
2216   if (Proto->isVariadic())
2217     Out << 'z';
2218 }
2219
2220 // <type>            ::= <class-enum-type>
2221 // <class-enum-type> ::= <name>
2222 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2223   mangleName(T->getDecl());
2224 }
2225
2226 // <type>            ::= <class-enum-type>
2227 // <class-enum-type> ::= <name>
2228 void CXXNameMangler::mangleType(const EnumType *T) {
2229   mangleType(static_cast<const TagType*>(T));
2230 }
2231 void CXXNameMangler::mangleType(const RecordType *T) {
2232   mangleType(static_cast<const TagType*>(T));
2233 }
2234 void CXXNameMangler::mangleType(const TagType *T) {
2235   mangleName(T->getDecl());
2236 }
2237
2238 // <type>       ::= <array-type>
2239 // <array-type> ::= A <positive dimension number> _ <element type>
2240 //              ::= A [<dimension expression>] _ <element type>
2241 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2242   Out << 'A' << T->getSize() << '_';
2243   mangleType(T->getElementType());
2244 }
2245 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2246   Out << 'A';
2247   // decayed vla types (size 0) will just be skipped.
2248   if (T->getSizeExpr())
2249     mangleExpression(T->getSizeExpr());
2250   Out << '_';
2251   mangleType(T->getElementType());
2252 }
2253 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2254   Out << 'A';
2255   mangleExpression(T->getSizeExpr());
2256   Out << '_';
2257   mangleType(T->getElementType());
2258 }
2259 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2260   Out << "A_";
2261   mangleType(T->getElementType());
2262 }
2263
2264 // <type>                   ::= <pointer-to-member-type>
2265 // <pointer-to-member-type> ::= M <class type> <member type>
2266 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2267   Out << 'M';
2268   mangleType(QualType(T->getClass(), 0));
2269   QualType PointeeType = T->getPointeeType();
2270   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2271     mangleType(FPT);
2272     
2273     // Itanium C++ ABI 5.1.8:
2274     //
2275     //   The type of a non-static member function is considered to be different,
2276     //   for the purposes of substitution, from the type of a namespace-scope or
2277     //   static member function whose type appears similar. The types of two
2278     //   non-static member functions are considered to be different, for the
2279     //   purposes of substitution, if the functions are members of different
2280     //   classes. In other words, for the purposes of substitution, the class of 
2281     //   which the function is a member is considered part of the type of 
2282     //   function.
2283
2284     // Given that we already substitute member function pointers as a
2285     // whole, the net effect of this rule is just to unconditionally
2286     // suppress substitution on the function type in a member pointer.
2287     // We increment the SeqID here to emulate adding an entry to the
2288     // substitution table.
2289     ++SeqID;
2290   } else
2291     mangleType(PointeeType);
2292 }
2293
2294 // <type>           ::= <template-param>
2295 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2296   mangleTemplateParameter(T->getIndex());
2297 }
2298
2299 // <type>           ::= <template-param>
2300 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2301   // FIXME: not clear how to mangle this!
2302   // template <class T...> class A {
2303   //   template <class U...> void foo(T(*)(U) x...);
2304   // };
2305   Out << "_SUBSTPACK_";
2306 }
2307
2308 // <type> ::= P <type>   # pointer-to
2309 void CXXNameMangler::mangleType(const PointerType *T) {
2310   Out << 'P';
2311   mangleType(T->getPointeeType());
2312 }
2313 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2314   Out << 'P';
2315   mangleType(T->getPointeeType());
2316 }
2317
2318 // <type> ::= R <type>   # reference-to
2319 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2320   Out << 'R';
2321   mangleType(T->getPointeeType());
2322 }
2323
2324 // <type> ::= O <type>   # rvalue reference-to (C++0x)
2325 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2326   Out << 'O';
2327   mangleType(T->getPointeeType());
2328 }
2329
2330 // <type> ::= C <type>   # complex pair (C 2000)
2331 void CXXNameMangler::mangleType(const ComplexType *T) {
2332   Out << 'C';
2333   mangleType(T->getElementType());
2334 }
2335
2336 // ARM's ABI for Neon vector types specifies that they should be mangled as
2337 // if they are structs (to match ARM's initial implementation).  The
2338 // vector type must be one of the special types predefined by ARM.
2339 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2340   QualType EltType = T->getElementType();
2341   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2342   const char *EltName = nullptr;
2343   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2344     switch (cast<BuiltinType>(EltType)->getKind()) {
2345     case BuiltinType::SChar:
2346     case BuiltinType::UChar:
2347       EltName = "poly8_t";
2348       break;
2349     case BuiltinType::Short:
2350     case BuiltinType::UShort:
2351       EltName = "poly16_t";
2352       break;
2353     case BuiltinType::ULongLong:
2354       EltName = "poly64_t";
2355       break;
2356     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2357     }
2358   } else {
2359     switch (cast<BuiltinType>(EltType)->getKind()) {
2360     case BuiltinType::SChar:     EltName = "int8_t"; break;
2361     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2362     case BuiltinType::Short:     EltName = "int16_t"; break;
2363     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2364     case BuiltinType::Int:       EltName = "int32_t"; break;
2365     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2366     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2367     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2368     case BuiltinType::Double:    EltName = "float64_t"; break;
2369     case BuiltinType::Float:     EltName = "float32_t"; break;
2370     case BuiltinType::Half:      EltName = "float16_t";break;
2371     default:
2372       llvm_unreachable("unexpected Neon vector element type");
2373     }
2374   }
2375   const char *BaseName = nullptr;
2376   unsigned BitSize = (T->getNumElements() *
2377                       getASTContext().getTypeSize(EltType));
2378   if (BitSize == 64)
2379     BaseName = "__simd64_";
2380   else {
2381     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2382     BaseName = "__simd128_";
2383   }
2384   Out << strlen(BaseName) + strlen(EltName);
2385   Out << BaseName << EltName;
2386 }
2387
2388 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2389   switch (EltType->getKind()) {
2390   case BuiltinType::SChar:
2391     return "Int8";
2392   case BuiltinType::Short:
2393     return "Int16";
2394   case BuiltinType::Int:
2395     return "Int32";
2396   case BuiltinType::Long:
2397   case BuiltinType::LongLong:
2398     return "Int64";
2399   case BuiltinType::UChar:
2400     return "Uint8";
2401   case BuiltinType::UShort:
2402     return "Uint16";
2403   case BuiltinType::UInt:
2404     return "Uint32";
2405   case BuiltinType::ULong:
2406   case BuiltinType::ULongLong:
2407     return "Uint64";
2408   case BuiltinType::Half:
2409     return "Float16";
2410   case BuiltinType::Float:
2411     return "Float32";
2412   case BuiltinType::Double:
2413     return "Float64";
2414   default:
2415     llvm_unreachable("Unexpected vector element base type");
2416   }
2417 }
2418
2419 // AArch64's ABI for Neon vector types specifies that they should be mangled as
2420 // the equivalent internal name. The vector type must be one of the special
2421 // types predefined by ARM.
2422 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2423   QualType EltType = T->getElementType();
2424   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2425   unsigned BitSize =
2426       (T->getNumElements() * getASTContext().getTypeSize(EltType));
2427   (void)BitSize; // Silence warning.
2428
2429   assert((BitSize == 64 || BitSize == 128) &&
2430          "Neon vector type not 64 or 128 bits");
2431
2432   StringRef EltName;
2433   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2434     switch (cast<BuiltinType>(EltType)->getKind()) {
2435     case BuiltinType::UChar:
2436       EltName = "Poly8";
2437       break;
2438     case BuiltinType::UShort:
2439       EltName = "Poly16";
2440       break;
2441     case BuiltinType::ULong:
2442     case BuiltinType::ULongLong:
2443       EltName = "Poly64";
2444       break;
2445     default:
2446       llvm_unreachable("unexpected Neon polynomial vector element type");
2447     }
2448   } else
2449     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2450
2451   std::string TypeName =
2452       ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2453   Out << TypeName.length() << TypeName;
2454 }
2455
2456 // GNU extension: vector types
2457 // <type>                  ::= <vector-type>
2458 // <vector-type>           ::= Dv <positive dimension number> _
2459 //                                    <extended element type>
2460 //                         ::= Dv [<dimension expression>] _ <element type>
2461 // <extended element type> ::= <element type>
2462 //                         ::= p # AltiVec vector pixel
2463 //                         ::= b # Altivec vector bool
2464 void CXXNameMangler::mangleType(const VectorType *T) {
2465   if ((T->getVectorKind() == VectorType::NeonVector ||
2466        T->getVectorKind() == VectorType::NeonPolyVector)) {
2467     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2468     llvm::Triple::ArchType Arch =
2469         getASTContext().getTargetInfo().getTriple().getArch();
2470     if ((Arch == llvm::Triple::aarch64 ||
2471          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2472       mangleAArch64NeonVectorType(T);
2473     else
2474       mangleNeonVectorType(T);
2475     return;
2476   }
2477   Out << "Dv" << T->getNumElements() << '_';
2478   if (T->getVectorKind() == VectorType::AltiVecPixel)
2479     Out << 'p';
2480   else if (T->getVectorKind() == VectorType::AltiVecBool)
2481     Out << 'b';
2482   else
2483     mangleType(T->getElementType());
2484 }
2485 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2486   mangleType(static_cast<const VectorType*>(T));
2487 }
2488 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2489   Out << "Dv";
2490   mangleExpression(T->getSizeExpr());
2491   Out << '_';
2492   mangleType(T->getElementType());
2493 }
2494
2495 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2496   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2497   Out << "Dp";
2498   mangleType(T->getPattern());
2499 }
2500
2501 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2502   mangleSourceName(T->getDecl()->getIdentifier());
2503 }
2504
2505 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2506   // Treat __kindof as a vendor extended type qualifier.
2507   if (T->isKindOfType())
2508     Out << "U8__kindof";
2509
2510   if (!T->qual_empty()) {
2511     // Mangle protocol qualifiers.
2512     SmallString<64> QualStr;
2513     llvm::raw_svector_ostream QualOS(QualStr);
2514     QualOS << "objcproto";
2515     for (const auto *I : T->quals()) {
2516       StringRef name = I->getName();
2517       QualOS << name.size() << name;
2518     }
2519     Out << 'U' << QualStr.size() << QualStr;
2520   }
2521
2522   mangleType(T->getBaseType());
2523
2524   if (T->isSpecialized()) {
2525     // Mangle type arguments as I <type>+ E
2526     Out << 'I';
2527     for (auto typeArg : T->getTypeArgs())
2528       mangleType(typeArg);
2529     Out << 'E';
2530   }
2531 }
2532
2533 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2534   Out << "U13block_pointer";
2535   mangleType(T->getPointeeType());
2536 }
2537
2538 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2539   // Mangle injected class name types as if the user had written the
2540   // specialization out fully.  It may not actually be possible to see
2541   // this mangling, though.
2542   mangleType(T->getInjectedSpecializationType());
2543 }
2544
2545 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2546   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2547     mangleName(TD, T->getArgs(), T->getNumArgs());
2548   } else {
2549     if (mangleSubstitution(QualType(T, 0)))
2550       return;
2551     
2552     mangleTemplatePrefix(T->getTemplateName());
2553     
2554     // FIXME: GCC does not appear to mangle the template arguments when
2555     // the template in question is a dependent template name. Should we
2556     // emulate that badness?
2557     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2558     addSubstitution(QualType(T, 0));
2559   }
2560 }
2561
2562 void CXXNameMangler::mangleType(const DependentNameType *T) {
2563   // Proposal by cxx-abi-dev, 2014-03-26
2564   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2565   //                                 # dependent elaborated type specifier using
2566   //                                 # 'typename'
2567   //                   ::= Ts <name> # dependent elaborated type specifier using
2568   //                                 # 'struct' or 'class'
2569   //                   ::= Tu <name> # dependent elaborated type specifier using
2570   //                                 # 'union'
2571   //                   ::= Te <name> # dependent elaborated type specifier using
2572   //                                 # 'enum'
2573   switch (T->getKeyword()) {
2574     case ETK_Typename:
2575       break;
2576     case ETK_Struct:
2577     case ETK_Class:
2578     case ETK_Interface:
2579       Out << "Ts";
2580       break;
2581     case ETK_Union:
2582       Out << "Tu";
2583       break;
2584     case ETK_Enum:
2585       Out << "Te";
2586       break;
2587     default:
2588       llvm_unreachable("unexpected keyword for dependent type name");
2589   }
2590   // Typename types are always nested
2591   Out << 'N';
2592   manglePrefix(T->getQualifier());
2593   mangleSourceName(T->getIdentifier());
2594   Out << 'E';
2595 }
2596
2597 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2598   // Dependently-scoped template types are nested if they have a prefix.
2599   Out << 'N';
2600
2601   // TODO: avoid making this TemplateName.
2602   TemplateName Prefix =
2603     getASTContext().getDependentTemplateName(T->getQualifier(),
2604                                              T->getIdentifier());
2605   mangleTemplatePrefix(Prefix);
2606
2607   // FIXME: GCC does not appear to mangle the template arguments when
2608   // the template in question is a dependent template name. Should we
2609   // emulate that badness?
2610   mangleTemplateArgs(T->getArgs(), T->getNumArgs());    
2611   Out << 'E';
2612 }
2613
2614 void CXXNameMangler::mangleType(const TypeOfType *T) {
2615   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2616   // "extension with parameters" mangling.
2617   Out << "u6typeof";
2618 }
2619
2620 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2621   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2622   // "extension with parameters" mangling.
2623   Out << "u6typeof";
2624 }
2625
2626 void CXXNameMangler::mangleType(const DecltypeType *T) {
2627   Expr *E = T->getUnderlyingExpr();
2628
2629   // type ::= Dt <expression> E  # decltype of an id-expression
2630   //                             #   or class member access
2631   //      ::= DT <expression> E  # decltype of an expression
2632
2633   // This purports to be an exhaustive list of id-expressions and
2634   // class member accesses.  Note that we do not ignore parentheses;
2635   // parentheses change the semantics of decltype for these
2636   // expressions (and cause the mangler to use the other form).
2637   if (isa<DeclRefExpr>(E) ||
2638       isa<MemberExpr>(E) ||
2639       isa<UnresolvedLookupExpr>(E) ||
2640       isa<DependentScopeDeclRefExpr>(E) ||
2641       isa<CXXDependentScopeMemberExpr>(E) ||
2642       isa<UnresolvedMemberExpr>(E))
2643     Out << "Dt";
2644   else
2645     Out << "DT";
2646   mangleExpression(E);
2647   Out << 'E';
2648 }
2649
2650 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2651   // If this is dependent, we need to record that. If not, we simply
2652   // mangle it as the underlying type since they are equivalent.
2653   if (T->isDependentType()) {
2654     Out << 'U';
2655     
2656     switch (T->getUTTKind()) {
2657       case UnaryTransformType::EnumUnderlyingType:
2658         Out << "3eut";
2659         break;
2660     }
2661   }
2662
2663   mangleType(T->getUnderlyingType());
2664 }
2665
2666 void CXXNameMangler::mangleType(const AutoType *T) {
2667   QualType D = T->getDeducedType();
2668   // <builtin-type> ::= Da  # dependent auto
2669   if (D.isNull()) {
2670     assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2671            "shouldn't need to mangle __auto_type!");
2672     Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2673   } else
2674     mangleType(D);
2675 }
2676
2677 void CXXNameMangler::mangleType(const AtomicType *T) {
2678   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
2679   // (Until there's a standardized mangling...)
2680   Out << "U7_Atomic";
2681   mangleType(T->getValueType());
2682 }
2683
2684 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2685                                           const llvm::APSInt &Value) {
2686   //  <expr-primary> ::= L <type> <value number> E # integer literal
2687   Out << 'L';
2688
2689   mangleType(T);
2690   if (T->isBooleanType()) {
2691     // Boolean values are encoded as 0/1.
2692     Out << (Value.getBoolValue() ? '1' : '0');
2693   } else {
2694     mangleNumber(Value);
2695   }
2696   Out << 'E';
2697
2698 }
2699
2700 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
2701   // Ignore member expressions involving anonymous unions.
2702   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
2703     if (!RT->getDecl()->isAnonymousStructOrUnion())
2704       break;
2705     const auto *ME = dyn_cast<MemberExpr>(Base);
2706     if (!ME)
2707       break;
2708     Base = ME->getBase();
2709     IsArrow = ME->isArrow();
2710   }
2711
2712   if (Base->isImplicitCXXThis()) {
2713     // Note: GCC mangles member expressions to the implicit 'this' as
2714     // *this., whereas we represent them as this->. The Itanium C++ ABI
2715     // does not specify anything here, so we follow GCC.
2716     Out << "dtdefpT";
2717   } else {
2718     Out << (IsArrow ? "pt" : "dt");
2719     mangleExpression(Base);
2720   }
2721 }
2722
2723 /// Mangles a member expression.
2724 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2725                                       bool isArrow,
2726                                       NestedNameSpecifier *qualifier,
2727                                       NamedDecl *firstQualifierLookup,
2728                                       DeclarationName member,
2729                                       unsigned arity) {
2730   // <expression> ::= dt <expression> <unresolved-name>
2731   //              ::= pt <expression> <unresolved-name>
2732   if (base)
2733     mangleMemberExprBase(base, isArrow);
2734   mangleUnresolvedName(qualifier, member, arity);
2735 }
2736
2737 /// Look at the callee of the given call expression and determine if
2738 /// it's a parenthesized id-expression which would have triggered ADL
2739 /// otherwise.
2740 static bool isParenthesizedADLCallee(const CallExpr *call) {
2741   const Expr *callee = call->getCallee();
2742   const Expr *fn = callee->IgnoreParens();
2743
2744   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2745   // too, but for those to appear in the callee, it would have to be
2746   // parenthesized.
2747   if (callee == fn) return false;
2748
2749   // Must be an unresolved lookup.
2750   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2751   if (!lookup) return false;
2752
2753   assert(!lookup->requiresADL());
2754
2755   // Must be an unqualified lookup.
2756   if (lookup->getQualifier()) return false;
2757
2758   // Must not have found a class member.  Note that if one is a class
2759   // member, they're all class members.
2760   if (lookup->getNumDecls() > 0 &&
2761       (*lookup->decls_begin())->isCXXClassMember())
2762     return false;
2763
2764   // Otherwise, ADL would have been triggered.
2765   return true;
2766 }
2767
2768 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
2769   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2770   Out << CastEncoding;
2771   mangleType(ECE->getType());
2772   mangleExpression(ECE->getSubExpr());
2773 }
2774
2775 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
2776   if (auto *Syntactic = InitList->getSyntacticForm())
2777     InitList = Syntactic;
2778   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2779     mangleExpression(InitList->getInit(i));
2780 }
2781
2782 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2783   // <expression> ::= <unary operator-name> <expression>
2784   //              ::= <binary operator-name> <expression> <expression>
2785   //              ::= <trinary operator-name> <expression> <expression> <expression>
2786   //              ::= cv <type> expression           # conversion with one argument
2787   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2788   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
2789   //              ::= sc <type> <expression>         # static_cast<type> (expression)
2790   //              ::= cc <type> <expression>         # const_cast<type> (expression)
2791   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
2792   //              ::= st <type>                      # sizeof (a type)
2793   //              ::= at <type>                      # alignof (a type)
2794   //              ::= <template-param>
2795   //              ::= <function-param>
2796   //              ::= sr <type> <unqualified-name>                   # dependent name
2797   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2798   //              ::= ds <expression> <expression>                   # expr.*expr
2799   //              ::= sZ <template-param>                            # size of a parameter pack
2800   //              ::= sZ <function-param>    # size of a function parameter pack
2801   //              ::= <expr-primary>
2802   // <expr-primary> ::= L <type> <value number> E    # integer literal
2803   //                ::= L <type <value float> E      # floating literal
2804   //                ::= L <mangled-name> E           # external name
2805   //                ::= fpT                          # 'this' expression
2806   QualType ImplicitlyConvertedToType;
2807   
2808 recurse:
2809   switch (E->getStmtClass()) {
2810   case Expr::NoStmtClass:
2811 #define ABSTRACT_STMT(Type)
2812 #define EXPR(Type, Base)
2813 #define STMT(Type, Base) \
2814   case Expr::Type##Class:
2815 #include "clang/AST/StmtNodes.inc"
2816     // fallthrough
2817
2818   // These all can only appear in local or variable-initialization
2819   // contexts and so should never appear in a mangling.
2820   case Expr::AddrLabelExprClass:
2821   case Expr::DesignatedInitUpdateExprClass:
2822   case Expr::ImplicitValueInitExprClass:
2823   case Expr::NoInitExprClass:
2824   case Expr::ParenListExprClass:
2825   case Expr::LambdaExprClass:
2826   case Expr::MSPropertyRefExprClass:
2827   case Expr::MSPropertySubscriptExprClass:
2828   case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
2829   case Expr::OMPArraySectionExprClass:
2830     llvm_unreachable("unexpected statement kind");
2831
2832   // FIXME: invent manglings for all these.
2833   case Expr::BlockExprClass:
2834   case Expr::ChooseExprClass:
2835   case Expr::CompoundLiteralExprClass:
2836   case Expr::DesignatedInitExprClass:
2837   case Expr::ExtVectorElementExprClass:
2838   case Expr::GenericSelectionExprClass:
2839   case Expr::ObjCEncodeExprClass:
2840   case Expr::ObjCIsaExprClass:
2841   case Expr::ObjCIvarRefExprClass:
2842   case Expr::ObjCMessageExprClass:
2843   case Expr::ObjCPropertyRefExprClass:
2844   case Expr::ObjCProtocolExprClass:
2845   case Expr::ObjCSelectorExprClass:
2846   case Expr::ObjCStringLiteralClass:
2847   case Expr::ObjCBoxedExprClass:
2848   case Expr::ObjCArrayLiteralClass:
2849   case Expr::ObjCDictionaryLiteralClass:
2850   case Expr::ObjCSubscriptRefExprClass:
2851   case Expr::ObjCIndirectCopyRestoreExprClass:
2852   case Expr::OffsetOfExprClass:
2853   case Expr::PredefinedExprClass:
2854   case Expr::ShuffleVectorExprClass:
2855   case Expr::ConvertVectorExprClass:
2856   case Expr::StmtExprClass:
2857   case Expr::TypeTraitExprClass:
2858   case Expr::ArrayTypeTraitExprClass:
2859   case Expr::ExpressionTraitExprClass:
2860   case Expr::VAArgExprClass:
2861   case Expr::CUDAKernelCallExprClass:
2862   case Expr::AsTypeExprClass:
2863   case Expr::PseudoObjectExprClass:
2864   case Expr::AtomicExprClass:
2865   {
2866     // As bad as this diagnostic is, it's better than crashing.
2867     DiagnosticsEngine &Diags = Context.getDiags();
2868     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2869                                      "cannot yet mangle expression type %0");
2870     Diags.Report(E->getExprLoc(), DiagID)
2871       << E->getStmtClassName() << E->getSourceRange();
2872     break;
2873   }
2874
2875   case Expr::CXXUuidofExprClass: {
2876     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
2877     if (UE->isTypeOperand()) {
2878       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
2879       Out << "u8__uuidoft";
2880       mangleType(UuidT);
2881     } else {
2882       Expr *UuidExp = UE->getExprOperand();
2883       Out << "u8__uuidofz";
2884       mangleExpression(UuidExp, Arity);
2885     }
2886     break;
2887   }
2888
2889   // Even gcc-4.5 doesn't mangle this.
2890   case Expr::BinaryConditionalOperatorClass: {
2891     DiagnosticsEngine &Diags = Context.getDiags();
2892     unsigned DiagID =
2893       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2894                 "?: operator with omitted middle operand cannot be mangled");
2895     Diags.Report(E->getExprLoc(), DiagID)
2896       << E->getStmtClassName() << E->getSourceRange();
2897     break;
2898   }
2899
2900   // These are used for internal purposes and cannot be meaningfully mangled.
2901   case Expr::OpaqueValueExprClass:
2902     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2903
2904   case Expr::InitListExprClass: {
2905     Out << "il";
2906     mangleInitListElements(cast<InitListExpr>(E));
2907     Out << "E";
2908     break;
2909   }
2910
2911   case Expr::CXXDefaultArgExprClass:
2912     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2913     break;
2914
2915   case Expr::CXXDefaultInitExprClass:
2916     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2917     break;
2918
2919   case Expr::CXXStdInitializerListExprClass:
2920     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2921     break;
2922
2923   case Expr::SubstNonTypeTemplateParmExprClass:
2924     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2925                      Arity);
2926     break;
2927
2928   case Expr::UserDefinedLiteralClass:
2929     // We follow g++'s approach of mangling a UDL as a call to the literal
2930     // operator.
2931   case Expr::CXXMemberCallExprClass: // fallthrough
2932   case Expr::CallExprClass: {
2933     const CallExpr *CE = cast<CallExpr>(E);
2934
2935     // <expression> ::= cp <simple-id> <expression>* E
2936     // We use this mangling only when the call would use ADL except
2937     // for being parenthesized.  Per discussion with David
2938     // Vandervoorde, 2011.04.25.
2939     if (isParenthesizedADLCallee(CE)) {
2940       Out << "cp";
2941       // The callee here is a parenthesized UnresolvedLookupExpr with
2942       // no qualifier and should always get mangled as a <simple-id>
2943       // anyway.
2944
2945     // <expression> ::= cl <expression>* E
2946     } else {
2947       Out << "cl";
2948     }
2949
2950     unsigned CallArity = CE->getNumArgs();
2951     for (const Expr *Arg : CE->arguments())
2952       if (isa<PackExpansionExpr>(Arg))
2953         CallArity = UnknownArity;
2954
2955     mangleExpression(CE->getCallee(), CallArity);
2956     for (const Expr *Arg : CE->arguments())
2957       mangleExpression(Arg);
2958     Out << 'E';
2959     break;
2960   }
2961
2962   case Expr::CXXNewExprClass: {
2963     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2964     if (New->isGlobalNew()) Out << "gs";
2965     Out << (New->isArray() ? "na" : "nw");
2966     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2967            E = New->placement_arg_end(); I != E; ++I)
2968       mangleExpression(*I);
2969     Out << '_';
2970     mangleType(New->getAllocatedType());
2971     if (New->hasInitializer()) {
2972       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2973         Out << "il";
2974       else
2975         Out << "pi";
2976       const Expr *Init = New->getInitializer();
2977       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2978         // Directly inline the initializers.
2979         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2980                                                   E = CCE->arg_end();
2981              I != E; ++I)
2982           mangleExpression(*I);
2983       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2984         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2985           mangleExpression(PLE->getExpr(i));
2986       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2987                  isa<InitListExpr>(Init)) {
2988         // Only take InitListExprs apart for list-initialization.
2989         mangleInitListElements(cast<InitListExpr>(Init));
2990       } else
2991         mangleExpression(Init);
2992     }
2993     Out << 'E';
2994     break;
2995   }
2996
2997   case Expr::CXXPseudoDestructorExprClass: {
2998     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
2999     if (const Expr *Base = PDE->getBase())
3000       mangleMemberExprBase(Base, PDE->isArrow());
3001     NestedNameSpecifier *Qualifier = PDE->getQualifier();
3002     QualType ScopeType;
3003     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3004       if (Qualifier) {
3005         mangleUnresolvedPrefix(Qualifier,
3006                                /*Recursive=*/true);
3007         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3008         Out << 'E';
3009       } else {
3010         Out << "sr";
3011         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3012           Out << 'E';
3013       }
3014     } else if (Qualifier) {
3015       mangleUnresolvedPrefix(Qualifier);
3016     }
3017     // <base-unresolved-name> ::= dn <destructor-name>
3018     Out << "dn";
3019     QualType DestroyedType = PDE->getDestroyedType();
3020     mangleUnresolvedTypeOrSimpleId(DestroyedType);
3021     break;
3022   }
3023
3024   case Expr::MemberExprClass: {
3025     const MemberExpr *ME = cast<MemberExpr>(E);
3026     mangleMemberExpr(ME->getBase(), ME->isArrow(),
3027                      ME->getQualifier(), nullptr,
3028                      ME->getMemberDecl()->getDeclName(), Arity);
3029     break;
3030   }
3031
3032   case Expr::UnresolvedMemberExprClass: {
3033     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3034     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3035                      ME->isArrow(), ME->getQualifier(), nullptr,
3036                      ME->getMemberName(), Arity);
3037     if (ME->hasExplicitTemplateArgs())
3038       mangleTemplateArgs(ME->getExplicitTemplateArgs());
3039     break;
3040   }
3041
3042   case Expr::CXXDependentScopeMemberExprClass: {
3043     const CXXDependentScopeMemberExpr *ME
3044       = cast<CXXDependentScopeMemberExpr>(E);
3045     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3046                      ME->isArrow(), ME->getQualifier(),
3047                      ME->getFirstQualifierFoundInScope(),
3048                      ME->getMember(), Arity);
3049     if (ME->hasExplicitTemplateArgs())
3050       mangleTemplateArgs(ME->getExplicitTemplateArgs());
3051     break;
3052   }
3053
3054   case Expr::UnresolvedLookupExprClass: {
3055     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3056     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
3057
3058     // All the <unresolved-name> productions end in a
3059     // base-unresolved-name, where <template-args> are just tacked
3060     // onto the end.
3061     if (ULE->hasExplicitTemplateArgs())
3062       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
3063     break;
3064   }
3065
3066   case Expr::CXXUnresolvedConstructExprClass: {
3067     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3068     unsigned N = CE->arg_size();
3069
3070     Out << "cv";
3071     mangleType(CE->getType());
3072     if (N != 1) Out << '_';
3073     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3074     if (N != 1) Out << 'E';
3075     break;
3076   }
3077
3078   case Expr::CXXConstructExprClass: {
3079     const auto *CE = cast<CXXConstructExpr>(E);
3080     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3081       assert(
3082           CE->getNumArgs() >= 1 &&
3083           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3084           "implicit CXXConstructExpr must have one argument");
3085       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3086     }
3087     Out << "il";
3088     for (auto *E : CE->arguments())
3089       mangleExpression(E);
3090     Out << "E";
3091     break;
3092   }
3093
3094   case Expr::CXXTemporaryObjectExprClass: {
3095     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3096     unsigned N = CE->getNumArgs();
3097     bool List = CE->isListInitialization();
3098
3099     if (List)
3100       Out << "tl";
3101     else
3102       Out << "cv";
3103     mangleType(CE->getType());
3104     if (!List && N != 1)
3105       Out << '_';
3106     if (CE->isStdInitListInitialization()) {
3107       // We implicitly created a std::initializer_list<T> for the first argument
3108       // of a constructor of type U in an expression of the form U{a, b, c}.
3109       // Strip all the semantic gunk off the initializer list.
3110       auto *SILE =
3111           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3112       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3113       mangleInitListElements(ILE);
3114     } else {
3115       for (auto *E : CE->arguments())
3116         mangleExpression(E);
3117     }
3118     if (List || N != 1)
3119       Out << 'E';
3120     break;
3121   }
3122
3123   case Expr::CXXScalarValueInitExprClass:
3124     Out << "cv";
3125     mangleType(E->getType());
3126     Out << "_E";
3127     break;
3128
3129   case Expr::CXXNoexceptExprClass:
3130     Out << "nx";
3131     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3132     break;
3133
3134   case Expr::UnaryExprOrTypeTraitExprClass: {
3135     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3136     
3137     if (!SAE->isInstantiationDependent()) {
3138       // Itanium C++ ABI:
3139       //   If the operand of a sizeof or alignof operator is not 
3140       //   instantiation-dependent it is encoded as an integer literal 
3141       //   reflecting the result of the operator.
3142       //
3143       //   If the result of the operator is implicitly converted to a known 
3144       //   integer type, that type is used for the literal; otherwise, the type 
3145       //   of std::size_t or std::ptrdiff_t is used.
3146       QualType T = (ImplicitlyConvertedToType.isNull() || 
3147                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3148                                                     : ImplicitlyConvertedToType;
3149       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3150       mangleIntegerLiteral(T, V);
3151       break;
3152     }
3153     
3154     switch(SAE->getKind()) {
3155     case UETT_SizeOf:
3156       Out << 's';
3157       break;
3158     case UETT_AlignOf:
3159       Out << 'a';
3160       break;
3161     case UETT_VecStep: {
3162       DiagnosticsEngine &Diags = Context.getDiags();
3163       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3164                                      "cannot yet mangle vec_step expression");
3165       Diags.Report(DiagID);
3166       return;
3167     }
3168     case UETT_OpenMPRequiredSimdAlign:
3169       DiagnosticsEngine &Diags = Context.getDiags();
3170       unsigned DiagID = Diags.getCustomDiagID(
3171           DiagnosticsEngine::Error,
3172           "cannot yet mangle __builtin_omp_required_simd_align expression");
3173       Diags.Report(DiagID);
3174       return;
3175     }
3176     if (SAE->isArgumentType()) {
3177       Out << 't';
3178       mangleType(SAE->getArgumentType());
3179     } else {
3180       Out << 'z';
3181       mangleExpression(SAE->getArgumentExpr());
3182     }
3183     break;
3184   }
3185
3186   case Expr::CXXThrowExprClass: {
3187     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3188     //  <expression> ::= tw <expression>  # throw expression
3189     //               ::= tr               # rethrow
3190     if (TE->getSubExpr()) {
3191       Out << "tw";
3192       mangleExpression(TE->getSubExpr());
3193     } else {
3194       Out << "tr";
3195     }
3196     break;
3197   }
3198
3199   case Expr::CXXTypeidExprClass: {
3200     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3201     //  <expression> ::= ti <type>        # typeid (type)
3202     //               ::= te <expression>  # typeid (expression)
3203     if (TIE->isTypeOperand()) {
3204       Out << "ti";
3205       mangleType(TIE->getTypeOperand(Context.getASTContext()));
3206     } else {
3207       Out << "te";
3208       mangleExpression(TIE->getExprOperand());
3209     }
3210     break;
3211   }
3212
3213   case Expr::CXXDeleteExprClass: {
3214     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3215     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3216     //               ::= [gs] da <expression>  # [::] delete [] expr
3217     if (DE->isGlobalDelete()) Out << "gs";
3218     Out << (DE->isArrayForm() ? "da" : "dl");
3219     mangleExpression(DE->getArgument());
3220     break;
3221   }
3222
3223   case Expr::UnaryOperatorClass: {
3224     const UnaryOperator *UO = cast<UnaryOperator>(E);
3225     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3226                        /*Arity=*/1);
3227     mangleExpression(UO->getSubExpr());
3228     break;
3229   }
3230
3231   case Expr::ArraySubscriptExprClass: {
3232     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3233
3234     // Array subscript is treated as a syntactically weird form of
3235     // binary operator.
3236     Out << "ix";
3237     mangleExpression(AE->getLHS());
3238     mangleExpression(AE->getRHS());
3239     break;
3240   }
3241
3242   case Expr::CompoundAssignOperatorClass: // fallthrough
3243   case Expr::BinaryOperatorClass: {
3244     const BinaryOperator *BO = cast<BinaryOperator>(E);
3245     if (BO->getOpcode() == BO_PtrMemD)
3246       Out << "ds";
3247     else
3248       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3249                          /*Arity=*/2);
3250     mangleExpression(BO->getLHS());
3251     mangleExpression(BO->getRHS());
3252     break;
3253   }
3254
3255   case Expr::ConditionalOperatorClass: {
3256     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3257     mangleOperatorName(OO_Conditional, /*Arity=*/3);
3258     mangleExpression(CO->getCond());
3259     mangleExpression(CO->getLHS(), Arity);
3260     mangleExpression(CO->getRHS(), Arity);
3261     break;
3262   }
3263
3264   case Expr::ImplicitCastExprClass: {
3265     ImplicitlyConvertedToType = E->getType();
3266     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3267     goto recurse;
3268   }
3269       
3270   case Expr::ObjCBridgedCastExprClass: {
3271     // Mangle ownership casts as a vendor extended operator __bridge, 
3272     // __bridge_transfer, or __bridge_retain.
3273     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3274     Out << "v1U" << Kind.size() << Kind;
3275   }
3276   // Fall through to mangle the cast itself.
3277       
3278   case Expr::CStyleCastExprClass:
3279     mangleCastExpression(E, "cv");
3280     break;
3281
3282   case Expr::CXXFunctionalCastExprClass: {
3283     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3284     // FIXME: Add isImplicit to CXXConstructExpr.
3285     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3286       if (CCE->getParenOrBraceRange().isInvalid())
3287         Sub = CCE->getArg(0)->IgnoreImplicit();
3288     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3289       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3290     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3291       Out << "tl";
3292       mangleType(E->getType());
3293       mangleInitListElements(IL);
3294       Out << "E";
3295     } else {
3296       mangleCastExpression(E, "cv");
3297     }
3298     break;
3299   }
3300
3301   case Expr::CXXStaticCastExprClass:
3302     mangleCastExpression(E, "sc");
3303     break;
3304   case Expr::CXXDynamicCastExprClass:
3305     mangleCastExpression(E, "dc");
3306     break;
3307   case Expr::CXXReinterpretCastExprClass:
3308     mangleCastExpression(E, "rc");
3309     break;
3310   case Expr::CXXConstCastExprClass:
3311     mangleCastExpression(E, "cc");
3312     break;
3313
3314   case Expr::CXXOperatorCallExprClass: {
3315     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3316     unsigned NumArgs = CE->getNumArgs();
3317     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3318     // Mangle the arguments.
3319     for (unsigned i = 0; i != NumArgs; ++i)
3320       mangleExpression(CE->getArg(i));
3321     break;
3322   }
3323
3324   case Expr::ParenExprClass:
3325     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3326     break;
3327
3328   case Expr::DeclRefExprClass: {
3329     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3330
3331     switch (D->getKind()) {
3332     default:
3333       //  <expr-primary> ::= L <mangled-name> E # external name
3334       Out << 'L';
3335       mangle(D);
3336       Out << 'E';
3337       break;
3338
3339     case Decl::ParmVar:
3340       mangleFunctionParam(cast<ParmVarDecl>(D));
3341       break;
3342
3343     case Decl::EnumConstant: {
3344       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3345       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3346       break;
3347     }
3348
3349     case Decl::NonTypeTemplateParm: {
3350       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3351       mangleTemplateParameter(PD->getIndex());
3352       break;
3353     }
3354
3355     }
3356
3357     break;
3358   }
3359
3360   case Expr::SubstNonTypeTemplateParmPackExprClass:
3361     // FIXME: not clear how to mangle this!
3362     // template <unsigned N...> class A {
3363     //   template <class U...> void foo(U (&x)[N]...);
3364     // };
3365     Out << "_SUBSTPACK_";
3366     break;
3367
3368   case Expr::FunctionParmPackExprClass: {
3369     // FIXME: not clear how to mangle this!
3370     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3371     Out << "v110_SUBSTPACK";
3372     mangleFunctionParam(FPPE->getParameterPack());
3373     break;
3374   }
3375
3376   case Expr::DependentScopeDeclRefExprClass: {
3377     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3378     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
3379
3380     // All the <unresolved-name> productions end in a
3381     // base-unresolved-name, where <template-args> are just tacked
3382     // onto the end.
3383     if (DRE->hasExplicitTemplateArgs())
3384       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3385     break;
3386   }
3387
3388   case Expr::CXXBindTemporaryExprClass:
3389     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3390     break;
3391
3392   case Expr::ExprWithCleanupsClass:
3393     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3394     break;
3395
3396   case Expr::FloatingLiteralClass: {
3397     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3398     Out << 'L';
3399     mangleType(FL->getType());
3400     mangleFloat(FL->getValue());
3401     Out << 'E';
3402     break;
3403   }
3404
3405   case Expr::CharacterLiteralClass:
3406     Out << 'L';
3407     mangleType(E->getType());
3408     Out << cast<CharacterLiteral>(E)->getValue();
3409     Out << 'E';
3410     break;
3411
3412   // FIXME. __objc_yes/__objc_no are mangled same as true/false
3413   case Expr::ObjCBoolLiteralExprClass:
3414     Out << "Lb";
3415     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3416     Out << 'E';
3417     break;
3418   
3419   case Expr::CXXBoolLiteralExprClass:
3420     Out << "Lb";
3421     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3422     Out << 'E';
3423     break;
3424
3425   case Expr::IntegerLiteralClass: {
3426     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3427     if (E->getType()->isSignedIntegerType())
3428       Value.setIsSigned(true);
3429     mangleIntegerLiteral(E->getType(), Value);
3430     break;
3431   }
3432
3433   case Expr::ImaginaryLiteralClass: {
3434     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3435     // Mangle as if a complex literal.
3436     // Proposal from David Vandevoorde, 2010.06.30.
3437     Out << 'L';
3438     mangleType(E->getType());
3439     if (const FloatingLiteral *Imag =
3440           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3441       // Mangle a floating-point zero of the appropriate type.
3442       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3443       Out << '_';
3444       mangleFloat(Imag->getValue());
3445     } else {
3446       Out << "0_";
3447       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3448       if (IE->getSubExpr()->getType()->isSignedIntegerType())
3449         Value.setIsSigned(true);
3450       mangleNumber(Value);
3451     }
3452     Out << 'E';
3453     break;
3454   }
3455
3456   case Expr::StringLiteralClass: {
3457     // Revised proposal from David Vandervoorde, 2010.07.15.
3458     Out << 'L';
3459     assert(isa<ConstantArrayType>(E->getType()));
3460     mangleType(E->getType());
3461     Out << 'E';
3462     break;
3463   }
3464
3465   case Expr::GNUNullExprClass:
3466     // FIXME: should this really be mangled the same as nullptr?
3467     // fallthrough
3468
3469   case Expr::CXXNullPtrLiteralExprClass: {
3470     Out << "LDnE";
3471     break;
3472   }
3473       
3474   case Expr::PackExpansionExprClass:
3475     Out << "sp";
3476     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3477     break;
3478       
3479   case Expr::SizeOfPackExprClass: {
3480     auto *SPE = cast<SizeOfPackExpr>(E);
3481     if (SPE->isPartiallySubstituted()) {
3482       Out << "sP";
3483       for (const auto &A : SPE->getPartialArguments())
3484         mangleTemplateArg(A);
3485       Out << "E";
3486       break;
3487     }
3488
3489     Out << "sZ";
3490     const NamedDecl *Pack = SPE->getPack();
3491     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3492       mangleTemplateParameter(TTP->getIndex());
3493     else if (const NonTypeTemplateParmDecl *NTTP
3494                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3495       mangleTemplateParameter(NTTP->getIndex());
3496     else if (const TemplateTemplateParmDecl *TempTP
3497                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
3498       mangleTemplateParameter(TempTP->getIndex());
3499     else
3500       mangleFunctionParam(cast<ParmVarDecl>(Pack));
3501     break;
3502   }
3503
3504   case Expr::MaterializeTemporaryExprClass: {
3505     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3506     break;
3507   }
3508
3509   case Expr::CXXFoldExprClass: {
3510     auto *FE = cast<CXXFoldExpr>(E);
3511     if (FE->isLeftFold())
3512       Out << (FE->getInit() ? "fL" : "fl");
3513     else
3514       Out << (FE->getInit() ? "fR" : "fr");
3515
3516     if (FE->getOperator() == BO_PtrMemD)
3517       Out << "ds";
3518     else
3519       mangleOperatorName(
3520           BinaryOperator::getOverloadedOperator(FE->getOperator()),
3521           /*Arity=*/2);
3522
3523     if (FE->getLHS())
3524       mangleExpression(FE->getLHS());
3525     if (FE->getRHS())
3526       mangleExpression(FE->getRHS());
3527     break;
3528   }
3529
3530   case Expr::CXXThisExprClass:
3531     Out << "fpT";
3532     break;
3533
3534   case Expr::CoawaitExprClass:
3535     // FIXME: Propose a non-vendor mangling.
3536     Out << "v18co_await";
3537     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
3538     break;
3539
3540   case Expr::CoyieldExprClass:
3541     // FIXME: Propose a non-vendor mangling.
3542     Out << "v18co_yield";
3543     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
3544     break;
3545   }
3546 }
3547
3548 /// Mangle an expression which refers to a parameter variable.
3549 ///
3550 /// <expression>     ::= <function-param>
3551 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3552 /// <function-param> ::= fp <top-level CV-qualifiers>
3553 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3554 /// <function-param> ::= fL <L-1 non-negative number>
3555 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3556 /// <function-param> ::= fL <L-1 non-negative number>
3557 ///                      p <top-level CV-qualifiers>
3558 ///                      <I-1 non-negative number> _         # L > 0, I > 0
3559 ///
3560 /// L is the nesting depth of the parameter, defined as 1 if the
3561 /// parameter comes from the innermost function prototype scope
3562 /// enclosing the current context, 2 if from the next enclosing
3563 /// function prototype scope, and so on, with one special case: if
3564 /// we've processed the full parameter clause for the innermost
3565 /// function type, then L is one less.  This definition conveniently
3566 /// makes it irrelevant whether a function's result type was written
3567 /// trailing or leading, but is otherwise overly complicated; the
3568 /// numbering was first designed without considering references to
3569 /// parameter in locations other than return types, and then the
3570 /// mangling had to be generalized without changing the existing
3571 /// manglings.
3572 ///
3573 /// I is the zero-based index of the parameter within its parameter
3574 /// declaration clause.  Note that the original ABI document describes
3575 /// this using 1-based ordinals.
3576 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3577   unsigned parmDepth = parm->getFunctionScopeDepth();
3578   unsigned parmIndex = parm->getFunctionScopeIndex();
3579
3580   // Compute 'L'.
3581   // parmDepth does not include the declaring function prototype.
3582   // FunctionTypeDepth does account for that.
3583   assert(parmDepth < FunctionTypeDepth.getDepth());
3584   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3585   if (FunctionTypeDepth.isInResultType())
3586     nestingDepth--;
3587
3588   if (nestingDepth == 0) {
3589     Out << "fp";
3590   } else {
3591     Out << "fL" << (nestingDepth - 1) << 'p';
3592   }
3593
3594   // Top-level qualifiers.  We don't have to worry about arrays here,
3595   // because parameters declared as arrays should already have been
3596   // transformed to have pointer type. FIXME: apparently these don't
3597   // get mangled if used as an rvalue of a known non-class type?
3598   assert(!parm->getType()->isArrayType()
3599          && "parameter's type is still an array type?");
3600   mangleQualifiers(parm->getType().getQualifiers());
3601
3602   // Parameter index.
3603   if (parmIndex != 0) {
3604     Out << (parmIndex - 1);
3605   }
3606   Out << '_';
3607 }
3608
3609 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3610   // <ctor-dtor-name> ::= C1  # complete object constructor
3611   //                  ::= C2  # base object constructor
3612   //
3613   // In addition, C5 is a comdat name with C1 and C2 in it.
3614   switch (T) {
3615   case Ctor_Complete:
3616     Out << "C1";
3617     break;
3618   case Ctor_Base:
3619     Out << "C2";
3620     break;
3621   case Ctor_Comdat:
3622     Out << "C5";
3623     break;
3624   case Ctor_DefaultClosure:
3625   case Ctor_CopyingClosure:
3626     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
3627   }
3628 }
3629
3630 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3631   // <ctor-dtor-name> ::= D0  # deleting destructor
3632   //                  ::= D1  # complete object destructor
3633   //                  ::= D2  # base object destructor
3634   //
3635   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
3636   switch (T) {
3637   case Dtor_Deleting:
3638     Out << "D0";
3639     break;
3640   case Dtor_Complete:
3641     Out << "D1";
3642     break;
3643   case Dtor_Base:
3644     Out << "D2";
3645     break;
3646   case Dtor_Comdat:
3647     Out << "D5";
3648     break;
3649   }
3650 }
3651
3652 void CXXNameMangler::mangleTemplateArgs(
3653                           const ASTTemplateArgumentListInfo &TemplateArgs) {
3654   // <template-args> ::= I <template-arg>+ E
3655   Out << 'I';
3656   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3657     mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3658   Out << 'E';
3659 }
3660
3661 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3662   // <template-args> ::= I <template-arg>+ E
3663   Out << 'I';
3664   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3665     mangleTemplateArg(AL[i]);
3666   Out << 'E';
3667 }
3668
3669 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3670                                         unsigned NumTemplateArgs) {
3671   // <template-args> ::= I <template-arg>+ E
3672   Out << 'I';
3673   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3674     mangleTemplateArg(TemplateArgs[i]);
3675   Out << 'E';
3676 }
3677
3678 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3679   // <template-arg> ::= <type>              # type or template
3680   //                ::= X <expression> E    # expression
3681   //                ::= <expr-primary>      # simple expressions
3682   //                ::= J <template-arg>* E # argument pack
3683   if (!A.isInstantiationDependent() || A.isDependent())
3684     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3685   
3686   switch (A.getKind()) {
3687   case TemplateArgument::Null:
3688     llvm_unreachable("Cannot mangle NULL template argument");
3689       
3690   case TemplateArgument::Type:
3691     mangleType(A.getAsType());
3692     break;
3693   case TemplateArgument::Template:
3694     // This is mangled as <type>.
3695     mangleType(A.getAsTemplate());
3696     break;
3697   case TemplateArgument::TemplateExpansion:
3698     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3699     Out << "Dp";
3700     mangleType(A.getAsTemplateOrTemplatePattern());
3701     break;
3702   case TemplateArgument::Expression: {
3703     // It's possible to end up with a DeclRefExpr here in certain
3704     // dependent cases, in which case we should mangle as a
3705     // declaration.
3706     const Expr *E = A.getAsExpr()->IgnoreParens();
3707     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3708       const ValueDecl *D = DRE->getDecl();
3709       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3710         Out << 'L';
3711         mangle(D);
3712         Out << 'E';
3713         break;
3714       }
3715     }
3716     
3717     Out << 'X';
3718     mangleExpression(E);
3719     Out << 'E';
3720     break;
3721   }
3722   case TemplateArgument::Integral:
3723     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3724     break;
3725   case TemplateArgument::Declaration: {
3726     //  <expr-primary> ::= L <mangled-name> E # external name
3727     // Clang produces AST's where pointer-to-member-function expressions
3728     // and pointer-to-function expressions are represented as a declaration not
3729     // an expression. We compensate for it here to produce the correct mangling.
3730     ValueDecl *D = A.getAsDecl();
3731     bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
3732     if (compensateMangling) {
3733       Out << 'X';
3734       mangleOperatorName(OO_Amp, 1);
3735     }
3736
3737     Out << 'L';
3738     // References to external entities use the mangled name; if the name would
3739     // not normally be manged then mangle it as unqualified.
3740     mangle(D);
3741     Out << 'E';
3742
3743     if (compensateMangling)
3744       Out << 'E';
3745
3746     break;
3747   }
3748   case TemplateArgument::NullPtr: {
3749     //  <expr-primary> ::= L <type> 0 E
3750     Out << 'L';
3751     mangleType(A.getNullPtrType());
3752     Out << "0E";
3753     break;
3754   }
3755   case TemplateArgument::Pack: {
3756     //  <template-arg> ::= J <template-arg>* E
3757     Out << 'J';
3758     for (const auto &P : A.pack_elements())
3759       mangleTemplateArg(P);
3760     Out << 'E';
3761   }
3762   }
3763 }
3764
3765 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3766   // <template-param> ::= T_    # first template parameter
3767   //                  ::= T <parameter-2 non-negative number> _
3768   if (Index == 0)
3769     Out << "T_";
3770   else
3771     Out << 'T' << (Index - 1) << '_';
3772 }
3773
3774 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3775   if (SeqID == 1)
3776     Out << '0';
3777   else if (SeqID > 1) {
3778     SeqID--;
3779
3780     // <seq-id> is encoded in base-36, using digits and upper case letters.
3781     char Buffer[7]; // log(2**32) / log(36) ~= 7
3782     MutableArrayRef<char> BufferRef(Buffer);
3783     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3784
3785     for (; SeqID != 0; SeqID /= 36) {
3786       unsigned C = SeqID % 36;
3787       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3788     }
3789
3790     Out.write(I.base(), I - BufferRef.rbegin());
3791   }
3792   Out << '_';
3793 }
3794
3795 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3796   bool result = mangleSubstitution(type);
3797   assert(result && "no existing substitution for type");
3798   (void) result;
3799 }
3800
3801 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3802   bool result = mangleSubstitution(tname);
3803   assert(result && "no existing substitution for template name");
3804   (void) result;
3805 }
3806
3807 // <substitution> ::= S <seq-id> _
3808 //                ::= S_
3809 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3810   // Try one of the standard substitutions first.
3811   if (mangleStandardSubstitution(ND))
3812     return true;
3813
3814   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3815   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3816 }
3817
3818 /// Determine whether the given type has any qualifiers that are relevant for
3819 /// substitutions.
3820 static bool hasMangledSubstitutionQualifiers(QualType T) {
3821   Qualifiers Qs = T.getQualifiers();
3822   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3823 }
3824
3825 bool CXXNameMangler::mangleSubstitution(QualType T) {
3826   if (!hasMangledSubstitutionQualifiers(T)) {
3827     if (const RecordType *RT = T->getAs<RecordType>())
3828       return mangleSubstitution(RT->getDecl());
3829   }
3830
3831   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3832
3833   return mangleSubstitution(TypePtr);
3834 }
3835
3836 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3837   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3838     return mangleSubstitution(TD);
3839   
3840   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3841   return mangleSubstitution(
3842                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3843 }
3844
3845 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3846   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3847   if (I == Substitutions.end())
3848     return false;
3849
3850   unsigned SeqID = I->second;
3851   Out << 'S';
3852   mangleSeqID(SeqID);
3853
3854   return true;
3855 }
3856
3857 static bool isCharType(QualType T) {
3858   if (T.isNull())
3859     return false;
3860
3861   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3862     T->isSpecificBuiltinType(BuiltinType::Char_U);
3863 }
3864
3865 /// Returns whether a given type is a template specialization of a given name
3866 /// with a single argument of type char.
3867 static bool isCharSpecialization(QualType T, const char *Name) {
3868   if (T.isNull())
3869     return false;
3870
3871   const RecordType *RT = T->getAs<RecordType>();
3872   if (!RT)
3873     return false;
3874
3875   const ClassTemplateSpecializationDecl *SD =
3876     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3877   if (!SD)
3878     return false;
3879
3880   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3881     return false;
3882
3883   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3884   if (TemplateArgs.size() != 1)
3885     return false;
3886
3887   if (!isCharType(TemplateArgs[0].getAsType()))
3888     return false;
3889
3890   return SD->getIdentifier()->getName() == Name;
3891 }
3892
3893 template <std::size_t StrLen>
3894 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3895                                        const char (&Str)[StrLen]) {
3896   if (!SD->getIdentifier()->isStr(Str))
3897     return false;
3898
3899   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3900   if (TemplateArgs.size() != 2)
3901     return false;
3902
3903   if (!isCharType(TemplateArgs[0].getAsType()))
3904     return false;
3905
3906   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3907     return false;
3908
3909   return true;
3910 }
3911
3912 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3913   // <substitution> ::= St # ::std::
3914   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3915     if (isStd(NS)) {
3916       Out << "St";
3917       return true;
3918     }
3919   }
3920
3921   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3922     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3923       return false;
3924
3925     // <substitution> ::= Sa # ::std::allocator
3926     if (TD->getIdentifier()->isStr("allocator")) {
3927       Out << "Sa";
3928       return true;
3929     }
3930
3931     // <<substitution> ::= Sb # ::std::basic_string
3932     if (TD->getIdentifier()->isStr("basic_string")) {
3933       Out << "Sb";
3934       return true;
3935     }
3936   }
3937
3938   if (const ClassTemplateSpecializationDecl *SD =
3939         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3940     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3941       return false;
3942
3943     //    <substitution> ::= Ss # ::std::basic_string<char,
3944     //                            ::std::char_traits<char>,
3945     //                            ::std::allocator<char> >
3946     if (SD->getIdentifier()->isStr("basic_string")) {
3947       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3948
3949       if (TemplateArgs.size() != 3)
3950         return false;
3951
3952       if (!isCharType(TemplateArgs[0].getAsType()))
3953         return false;
3954
3955       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3956         return false;
3957
3958       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3959         return false;
3960
3961       Out << "Ss";
3962       return true;
3963     }
3964
3965     //    <substitution> ::= Si # ::std::basic_istream<char,
3966     //                            ::std::char_traits<char> >
3967     if (isStreamCharSpecialization(SD, "basic_istream")) {
3968       Out << "Si";
3969       return true;
3970     }
3971
3972     //    <substitution> ::= So # ::std::basic_ostream<char,
3973     //                            ::std::char_traits<char> >
3974     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3975       Out << "So";
3976       return true;
3977     }
3978
3979     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3980     //                            ::std::char_traits<char> >
3981     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3982       Out << "Sd";
3983       return true;
3984     }
3985   }
3986   return false;
3987 }
3988
3989 void CXXNameMangler::addSubstitution(QualType T) {
3990   if (!hasMangledSubstitutionQualifiers(T)) {
3991     if (const RecordType *RT = T->getAs<RecordType>()) {
3992       addSubstitution(RT->getDecl());
3993       return;
3994     }
3995   }
3996
3997   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3998   addSubstitution(TypePtr);
3999 }
4000
4001 void CXXNameMangler::addSubstitution(TemplateName Template) {
4002   if (TemplateDecl *TD = Template.getAsTemplateDecl())
4003     return addSubstitution(TD);
4004   
4005   Template = Context.getASTContext().getCanonicalTemplateName(Template);
4006   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4007 }
4008
4009 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4010   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4011   Substitutions[Ptr] = SeqID++;
4012 }
4013
4014 //
4015
4016 /// Mangles the name of the declaration D and emits that name to the given
4017 /// output stream.
4018 ///
4019 /// If the declaration D requires a mangled name, this routine will emit that
4020 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4021 /// and this routine will return false. In this case, the caller should just
4022 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
4023 /// name.
4024 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4025                                              raw_ostream &Out) {
4026   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4027           "Invalid mangleName() call, argument is not a variable or function!");
4028   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4029          "Invalid mangleName() call on 'structor decl!");
4030
4031   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4032                                  getASTContext().getSourceManager(),
4033                                  "Mangling declaration");
4034
4035   CXXNameMangler Mangler(*this, Out, D);
4036   Mangler.mangle(D);
4037 }
4038
4039 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4040                                              CXXCtorType Type,
4041                                              raw_ostream &Out) {
4042   CXXNameMangler Mangler(*this, Out, D, Type);
4043   Mangler.mangle(D);
4044 }
4045
4046 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4047                                              CXXDtorType Type,
4048                                              raw_ostream &Out) {
4049   CXXNameMangler Mangler(*this, Out, D, Type);
4050   Mangler.mangle(D);
4051 }
4052
4053 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4054                                                    raw_ostream &Out) {
4055   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4056   Mangler.mangle(D);
4057 }
4058
4059 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4060                                                    raw_ostream &Out) {
4061   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4062   Mangler.mangle(D);
4063 }
4064
4065 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4066                                            const ThunkInfo &Thunk,
4067                                            raw_ostream &Out) {
4068   //  <special-name> ::= T <call-offset> <base encoding>
4069   //                      # base is the nominal target function of thunk
4070   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4071   //                      # base is the nominal target function of thunk
4072   //                      # first call-offset is 'this' adjustment
4073   //                      # second call-offset is result adjustment
4074   
4075   assert(!isa<CXXDestructorDecl>(MD) &&
4076          "Use mangleCXXDtor for destructor decls!");
4077   CXXNameMangler Mangler(*this, Out);
4078   Mangler.getStream() << "_ZT";
4079   if (!Thunk.Return.isEmpty())
4080     Mangler.getStream() << 'c';
4081   
4082   // Mangle the 'this' pointer adjustment.
4083   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4084                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4085
4086   // Mangle the return pointer adjustment if there is one.
4087   if (!Thunk.Return.isEmpty())
4088     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4089                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4090
4091   Mangler.mangleFunctionEncoding(MD);
4092 }
4093
4094 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4095     const CXXDestructorDecl *DD, CXXDtorType Type,
4096     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4097   //  <special-name> ::= T <call-offset> <base encoding>
4098   //                      # base is the nominal target function of thunk
4099   CXXNameMangler Mangler(*this, Out, DD, Type);
4100   Mangler.getStream() << "_ZT";
4101
4102   // Mangle the 'this' pointer adjustment.
4103   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 
4104                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4105
4106   Mangler.mangleFunctionEncoding(DD);
4107 }
4108
4109 /// Returns the mangled name for a guard variable for the passed in VarDecl.
4110 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4111                                                          raw_ostream &Out) {
4112   //  <special-name> ::= GV <object name>       # Guard variable for one-time
4113   //                                            # initialization
4114   CXXNameMangler Mangler(*this, Out);
4115   Mangler.getStream() << "_ZGV";
4116   Mangler.mangleName(D);
4117 }
4118
4119 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4120                                                         raw_ostream &Out) {
4121   // These symbols are internal in the Itanium ABI, so the names don't matter.
4122   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4123   // avoid duplicate symbols.
4124   Out << "__cxx_global_var_init";
4125 }
4126
4127 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4128                                                              raw_ostream &Out) {
4129   // Prefix the mangling of D with __dtor_.
4130   CXXNameMangler Mangler(*this, Out);
4131   Mangler.getStream() << "__dtor_";
4132   if (shouldMangleDeclName(D))
4133     Mangler.mangle(D);
4134   else
4135     Mangler.getStream() << D->getName();
4136 }
4137
4138 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4139     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4140   CXXNameMangler Mangler(*this, Out);
4141   Mangler.getStream() << "__filt_";
4142   if (shouldMangleDeclName(EnclosingDecl))
4143     Mangler.mangle(EnclosingDecl);
4144   else
4145     Mangler.getStream() << EnclosingDecl->getName();
4146 }
4147
4148 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4149     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4150   CXXNameMangler Mangler(*this, Out);
4151   Mangler.getStream() << "__fin_";
4152   if (shouldMangleDeclName(EnclosingDecl))
4153     Mangler.mangle(EnclosingDecl);
4154   else
4155     Mangler.getStream() << EnclosingDecl->getName();
4156 }
4157
4158 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4159                                                             raw_ostream &Out) {
4160   //  <special-name> ::= TH <object name>
4161   CXXNameMangler Mangler(*this, Out);
4162   Mangler.getStream() << "_ZTH";
4163   Mangler.mangleName(D);
4164 }
4165
4166 void
4167 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4168                                                           raw_ostream &Out) {
4169   //  <special-name> ::= TW <object name>
4170   CXXNameMangler Mangler(*this, Out);
4171   Mangler.getStream() << "_ZTW";
4172   Mangler.mangleName(D);
4173 }
4174
4175 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4176                                                         unsigned ManglingNumber,
4177                                                         raw_ostream &Out) {
4178   // We match the GCC mangling here.
4179   //  <special-name> ::= GR <object name>
4180   CXXNameMangler Mangler(*this, Out);
4181   Mangler.getStream() << "_ZGR";
4182   Mangler.mangleName(D);
4183   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4184   Mangler.mangleSeqID(ManglingNumber - 1);
4185 }
4186
4187 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4188                                                raw_ostream &Out) {
4189   // <special-name> ::= TV <type>  # virtual table
4190   CXXNameMangler Mangler(*this, Out);
4191   Mangler.getStream() << "_ZTV";
4192   Mangler.mangleNameOrStandardSubstitution(RD);
4193 }
4194
4195 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4196                                             raw_ostream &Out) {
4197   // <special-name> ::= TT <type>  # VTT structure
4198   CXXNameMangler Mangler(*this, Out);
4199   Mangler.getStream() << "_ZTT";
4200   Mangler.mangleNameOrStandardSubstitution(RD);
4201 }
4202
4203 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4204                                                    int64_t Offset,
4205                                                    const CXXRecordDecl *Type,
4206                                                    raw_ostream &Out) {
4207   // <special-name> ::= TC <type> <offset number> _ <base type>
4208   CXXNameMangler Mangler(*this, Out);
4209   Mangler.getStream() << "_ZTC";
4210   Mangler.mangleNameOrStandardSubstitution(RD);
4211   Mangler.getStream() << Offset;
4212   Mangler.getStream() << '_';
4213   Mangler.mangleNameOrStandardSubstitution(Type);
4214 }
4215
4216 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4217   // <special-name> ::= TI <type>  # typeinfo structure
4218   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4219   CXXNameMangler Mangler(*this, Out);
4220   Mangler.getStream() << "_ZTI";
4221   Mangler.mangleType(Ty);
4222 }
4223
4224 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4225                                                  raw_ostream &Out) {
4226   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
4227   CXXNameMangler Mangler(*this, Out);
4228   Mangler.getStream() << "_ZTS";
4229   Mangler.mangleType(Ty);
4230 }
4231
4232 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4233   mangleCXXRTTIName(Ty, Out);
4234 }
4235
4236 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4237   llvm_unreachable("Can't mangle string literals");
4238 }
4239
4240 ItaniumMangleContext *
4241 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4242   return new ItaniumMangleContextImpl(Context, Diags);
4243 }