[AliasAnalysis] Misc fixes for checking aliasing with scalable types.
[lldb.git] / llvm / lib / Analysis / MemoryBuiltins.cpp
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47
48 using namespace llvm;
49
50 #define DEBUG_TYPE "memory-builtins"
51
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   CallocLike         = 1<<2, // allocates + bzero
56   ReallocLike        = 1<<3, // reallocates
57   StrDupLike         = 1<<4,
58   MallocOrCallocLike = MallocLike | CallocLike,
59   AllocLike          = MallocLike | CallocLike | StrDupLike,
60   AnyAlloc           = AllocLike | ReallocLike
61 };
62
63 struct AllocFnsTy {
64   AllocType AllocTy;
65   unsigned NumParams;
66   // First and Second size parameters (or -1 if unused)
67   int FstParam, SndParam;
68 };
69
70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
71 // know which functions are nounwind, noalias, nocapture parameters, etc.
72 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
73   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
74   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
76   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
77   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
78   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
79                                 {MallocLike,  3, 0,  -1}},
80   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
81   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
82   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
83   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
84                                 {MallocLike,  3, 0,  -1}},
85   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
86   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
87   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
88   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
89                                 {MallocLike,  3, 0,  -1}},
90   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
91   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
92   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
93   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
94                                  {MallocLike,  3, 0,  -1}},
95   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
96   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
97   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
98   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
99   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
100   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
101   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
102   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
103   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
104   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
105   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
106   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
107   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
108   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
109 };
110
111 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
112                                          bool &IsNoBuiltin) {
113   // Don't care about intrinsics in this case.
114   if (isa<IntrinsicInst>(V))
115     return nullptr;
116
117   if (LookThroughBitCast)
118     V = V->stripPointerCasts();
119
120   ImmutableCallSite CS(V);
121   if (!CS.getInstruction())
122     return nullptr;
123
124   IsNoBuiltin = CS.isNoBuiltin();
125
126   if (const Function *Callee = CS.getCalledFunction())
127     return Callee;
128   return nullptr;
129 }
130
131 /// Returns the allocation data for the given value if it's either a call to a
132 /// known allocation function, or a call to a function with the allocsize
133 /// attribute.
134 static Optional<AllocFnsTy>
135 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
136                              const TargetLibraryInfo *TLI) {
137   // Make sure that the function is available.
138   StringRef FnName = Callee->getName();
139   LibFunc TLIFn;
140   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
141     return None;
142
143   const auto *Iter = find_if(
144       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
145         return P.first == TLIFn;
146       });
147
148   if (Iter == std::end(AllocationFnData))
149     return None;
150
151   const AllocFnsTy *FnData = &Iter->second;
152   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
153     return None;
154
155   // Check function prototype.
156   int FstParam = FnData->FstParam;
157   int SndParam = FnData->SndParam;
158   FunctionType *FTy = Callee->getFunctionType();
159
160   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
161       FTy->getNumParams() == FnData->NumParams &&
162       (FstParam < 0 ||
163        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
164         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
165       (SndParam < 0 ||
166        FTy->getParamType(SndParam)->isIntegerTy(32) ||
167        FTy->getParamType(SndParam)->isIntegerTy(64)))
168     return *FnData;
169   return None;
170 }
171
172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
173                                               const TargetLibraryInfo *TLI,
174                                               bool LookThroughBitCast = false) {
175   bool IsNoBuiltinCall;
176   if (const Function *Callee =
177           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
178     if (!IsNoBuiltinCall)
179       return getAllocationDataForFunction(Callee, AllocTy, TLI);
180   return None;
181 }
182
183 static Optional<AllocFnsTy>
184 getAllocationData(const Value *V, AllocType AllocTy,
185                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
186                   bool LookThroughBitCast = false) {
187   bool IsNoBuiltinCall;
188   if (const Function *Callee =
189           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
190     if (!IsNoBuiltinCall)
191       return getAllocationDataForFunction(
192           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
193   return None;
194 }
195
196 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
197                                               const TargetLibraryInfo *TLI) {
198   bool IsNoBuiltinCall;
199   const Function *Callee =
200       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
201   if (!Callee)
202     return None;
203
204   // Prefer to use existing information over allocsize. This will give us an
205   // accurate AllocTy.
206   if (!IsNoBuiltinCall)
207     if (Optional<AllocFnsTy> Data =
208             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
209       return Data;
210
211   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
212   if (Attr == Attribute())
213     return None;
214
215   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
216
217   AllocFnsTy Result;
218   // Because allocsize only tells us how many bytes are allocated, we're not
219   // really allowed to assume anything, so we use MallocLike.
220   Result.AllocTy = MallocLike;
221   Result.NumParams = Callee->getNumOperands();
222   Result.FstParam = Args.first;
223   Result.SndParam = Args.second.getValueOr(-1);
224   return Result;
225 }
226
227 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
228   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
229   return CS && CS.hasRetAttr(Attribute::NoAlias);
230 }
231
232 /// Tests if a value is a call or invoke to a library function that
233 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
234 /// like).
235 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
236                           bool LookThroughBitCast) {
237   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
238 }
239 bool llvm::isAllocationFn(
240     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
241     bool LookThroughBitCast) {
242   return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue();
243 }
244
245 /// Tests if a value is a call or invoke to a function that returns a
246 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
247 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
248                        bool LookThroughBitCast) {
249   // it's safe to consider realloc as noalias since accessing the original
250   // pointer is undefined behavior
251   return isAllocationFn(V, TLI, LookThroughBitCast) ||
252          hasNoAliasAttr(V, LookThroughBitCast);
253 }
254
255 /// Tests if a value is a call or invoke to a library function that
256 /// allocates uninitialized memory (such as malloc).
257 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
258                           bool LookThroughBitCast) {
259   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
260 }
261 bool llvm::isMallocLikeFn(
262     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
263     bool LookThroughBitCast) {
264   return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast)
265       .hasValue();
266 }
267
268 /// Tests if a value is a call or invoke to a library function that
269 /// allocates zero-filled memory (such as calloc).
270 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
271                           bool LookThroughBitCast) {
272   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
273 }
274
275 /// Tests if a value is a call or invoke to a library function that
276 /// allocates memory similar to malloc or calloc.
277 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
278                                   bool LookThroughBitCast) {
279   return getAllocationData(V, MallocOrCallocLike, TLI,
280                            LookThroughBitCast).hasValue();
281 }
282
283 /// Tests if a value is a call or invoke to a library function that
284 /// allocates memory (either malloc, calloc, or strdup like).
285 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
286                          bool LookThroughBitCast) {
287   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
288 }
289
290 /// Tests if a value is a call or invoke to a library function that
291 /// reallocates memory (e.g., realloc).
292 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
293                      bool LookThroughBitCast) {
294   return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
295 }
296
297 /// Tests if a functions is a call or invoke to a library function that
298 /// reallocates memory (e.g., realloc).
299 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
300   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
301 }
302
303 /// Tests if a value is a call or invoke to a library function that
304 /// allocates memory and throws if an allocation failed (e.g., new).
305 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
306                      bool LookThroughBitCast) {
307   return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue();
308 }
309
310 /// Tests if a value is a call or invoke to a library function that
311 /// allocates memory (strdup, strndup).
312 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI,
313                           bool LookThroughBitCast) {
314   return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue();
315 }
316
317 /// extractMallocCall - Returns the corresponding CallInst if the instruction
318 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
319 /// ignore InvokeInst here.
320 const CallInst *llvm::extractMallocCall(
321     const Value *I,
322     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
323   return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr;
324 }
325
326 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
327                                const TargetLibraryInfo *TLI,
328                                bool LookThroughSExt = false) {
329   if (!CI)
330     return nullptr;
331
332   // The size of the malloc's result type must be known to determine array size.
333   Type *T = getMallocAllocatedType(CI, TLI);
334   if (!T || !T->isSized())
335     return nullptr;
336
337   unsigned ElementSize = DL.getTypeAllocSize(T);
338   if (StructType *ST = dyn_cast<StructType>(T))
339     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
340
341   // If malloc call's arg can be determined to be a multiple of ElementSize,
342   // return the multiple.  Otherwise, return NULL.
343   Value *MallocArg = CI->getArgOperand(0);
344   Value *Multiple = nullptr;
345   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
346     return Multiple;
347
348   return nullptr;
349 }
350
351 /// getMallocType - Returns the PointerType resulting from the malloc call.
352 /// The PointerType depends on the number of bitcast uses of the malloc call:
353 ///   0: PointerType is the calls' return type.
354 ///   1: PointerType is the bitcast's result type.
355 ///  >1: Unique PointerType cannot be determined, return NULL.
356 PointerType *llvm::getMallocType(const CallInst *CI,
357                                  const TargetLibraryInfo *TLI) {
358   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
359
360   PointerType *MallocType = nullptr;
361   unsigned NumOfBitCastUses = 0;
362
363   // Determine if CallInst has a bitcast use.
364   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
365        UI != E;)
366     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
367       MallocType = cast<PointerType>(BCI->getDestTy());
368       NumOfBitCastUses++;
369     }
370
371   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
372   if (NumOfBitCastUses == 1)
373     return MallocType;
374
375   // Malloc call was not bitcast, so type is the malloc function's return type.
376   if (NumOfBitCastUses == 0)
377     return cast<PointerType>(CI->getType());
378
379   // Type could not be determined.
380   return nullptr;
381 }
382
383 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
384 /// The Type depends on the number of bitcast uses of the malloc call:
385 ///   0: PointerType is the malloc calls' return type.
386 ///   1: PointerType is the bitcast's result type.
387 ///  >1: Unique PointerType cannot be determined, return NULL.
388 Type *llvm::getMallocAllocatedType(const CallInst *CI,
389                                    const TargetLibraryInfo *TLI) {
390   PointerType *PT = getMallocType(CI, TLI);
391   return PT ? PT->getElementType() : nullptr;
392 }
393
394 /// getMallocArraySize - Returns the array size of a malloc call.  If the
395 /// argument passed to malloc is a multiple of the size of the malloced type,
396 /// then return that multiple.  For non-array mallocs, the multiple is
397 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
398 /// determined.
399 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
400                                 const TargetLibraryInfo *TLI,
401                                 bool LookThroughSExt) {
402   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
403   return computeArraySize(CI, DL, TLI, LookThroughSExt);
404 }
405
406 /// extractCallocCall - Returns the corresponding CallInst if the instruction
407 /// is a calloc call.
408 const CallInst *llvm::extractCallocCall(const Value *I,
409                                         const TargetLibraryInfo *TLI) {
410   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
411 }
412
413 /// isLibFreeFunction - Returns true if the function is a builtin free()
414 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
415   unsigned ExpectedNumParams;
416   if (TLIFn == LibFunc_free ||
417       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
418       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
419       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
420       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
421       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
422       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
423     ExpectedNumParams = 1;
424   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
425            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
426            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
427            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
428            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
429            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
430            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
431            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
432            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
433            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
434            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
435            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
436            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
437            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
438            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
439            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
440     ExpectedNumParams = 2;
441   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
442            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
443     ExpectedNumParams = 3;
444   else
445     return false;
446
447   // Check free prototype.
448   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
449   // attribute will exist.
450   FunctionType *FTy = F->getFunctionType();
451   if (!FTy->getReturnType()->isVoidTy())
452     return false;
453   if (FTy->getNumParams() != ExpectedNumParams)
454     return false;
455   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
456     return false;
457
458   return true;
459 }
460
461 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
462 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
463   bool IsNoBuiltinCall;
464   const Function *Callee =
465       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
466   if (Callee == nullptr || IsNoBuiltinCall)
467     return nullptr;
468
469   StringRef FnName = Callee->getName();
470   LibFunc TLIFn;
471   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
472     return nullptr;
473
474   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
475 }
476
477
478 //===----------------------------------------------------------------------===//
479 //  Utility functions to compute size of objects.
480 //
481 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
482   if (Data.second.isNegative() || Data.first.ult(Data.second))
483     return APInt(Data.first.getBitWidth(), 0);
484   return Data.first - Data.second;
485 }
486
487 /// Compute the size of the object pointed by Ptr. Returns true and the
488 /// object size in Size if successful, and false otherwise.
489 /// If RoundToAlign is true, then Size is rounded up to the alignment of
490 /// allocas, byval arguments, and global variables.
491 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
492                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
493   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
494   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
495   if (!Visitor.bothKnown(Data))
496     return false;
497
498   Size = getSizeWithOverflow(Data).getZExtValue();
499   return true;
500 }
501
502 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
503                                  const DataLayout &DL,
504                                  const TargetLibraryInfo *TLI,
505                                  bool MustSucceed) {
506   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
507          "ObjectSize must be a call to llvm.objectsize!");
508
509   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
510   ObjectSizeOpts EvalOptions;
511   // Unless we have to fold this to something, try to be as accurate as
512   // possible.
513   if (MustSucceed)
514     EvalOptions.EvalMode =
515         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
516   else
517     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
518
519   EvalOptions.NullIsUnknownSize =
520       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
521
522   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
523   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
524   if (StaticOnly) {
525     // FIXME: Does it make sense to just return a failure value if the size won't
526     // fit in the output and `!MustSucceed`?
527     uint64_t Size;
528     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
529         isUIntN(ResultType->getBitWidth(), Size))
530       return ConstantInt::get(ResultType, Size);
531   } else {
532     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
533     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
534     SizeOffsetEvalType SizeOffsetPair =
535         Eval.compute(ObjectSize->getArgOperand(0));
536
537     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
538       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
539       Builder.SetInsertPoint(ObjectSize);
540
541       // If we've outside the end of the object, then we can always access
542       // exactly 0 bytes.
543       Value *ResultSize =
544           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
545       Value *UseZero =
546           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
547       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
548       return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0),
549                                   ResultSize);
550     }
551   }
552
553   if (!MustSucceed)
554     return nullptr;
555
556   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
557 }
558
559 STATISTIC(ObjectVisitorArgument,
560           "Number of arguments with unsolved size and offset");
561 STATISTIC(ObjectVisitorLoad,
562           "Number of load instructions with unsolved size and offset");
563
564 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) {
565   if (Options.RoundToAlign && Alignment)
566     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment)));
567   return Size;
568 }
569
570 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
571                                                  const TargetLibraryInfo *TLI,
572                                                  LLVMContext &Context,
573                                                  ObjectSizeOpts Options)
574     : DL(DL), TLI(TLI), Options(Options) {
575   // Pointer size must be rechecked for each object visited since it could have
576   // a different address space.
577 }
578
579 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
580   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
581   Zero = APInt::getNullValue(IntTyBits);
582
583   V = V->stripPointerCasts();
584   if (Instruction *I = dyn_cast<Instruction>(V)) {
585     // If we have already seen this instruction, bail out. Cycles can happen in
586     // unreachable code after constant propagation.
587     if (!SeenInsts.insert(I).second)
588       return unknown();
589
590     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
591       return visitGEPOperator(*GEP);
592     return visit(*I);
593   }
594   if (Argument *A = dyn_cast<Argument>(V))
595     return visitArgument(*A);
596   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
597     return visitConstantPointerNull(*P);
598   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
599     return visitGlobalAlias(*GA);
600   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
601     return visitGlobalVariable(*GV);
602   if (UndefValue *UV = dyn_cast<UndefValue>(V))
603     return visitUndefValue(*UV);
604   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
605     if (CE->getOpcode() == Instruction::IntToPtr)
606       return unknown(); // clueless
607     if (CE->getOpcode() == Instruction::GetElementPtr)
608       return visitGEPOperator(cast<GEPOperator>(*CE));
609   }
610
611   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
612                     << *V << '\n');
613   return unknown();
614 }
615
616 /// When we're compiling N-bit code, and the user uses parameters that are
617 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
618 /// trouble with APInt size issues. This function handles resizing + overflow
619 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
620 /// I's value.
621 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
622   // More bits than we can handle. Checking the bit width isn't necessary, but
623   // it's faster than checking active bits, and should give `false` in the
624   // vast majority of cases.
625   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
626     return false;
627   if (I.getBitWidth() != IntTyBits)
628     I = I.zextOrTrunc(IntTyBits);
629   return true;
630 }
631
632 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
633   if (!I.getAllocatedType()->isSized())
634     return unknown();
635
636   if (I.getAllocatedType()->isVectorTy() &&
637       I.getAllocatedType()->getVectorIsScalable())
638     return unknown();
639
640   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
641   if (!I.isArrayAllocation())
642     return std::make_pair(align(Size, I.getAlignment()), Zero);
643
644   Value *ArraySize = I.getArraySize();
645   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
646     APInt NumElems = C->getValue();
647     if (!CheckedZextOrTrunc(NumElems))
648       return unknown();
649
650     bool Overflow;
651     Size = Size.umul_ov(NumElems, Overflow);
652     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
653                                                  Zero);
654   }
655   return unknown();
656 }
657
658 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
659   // No interprocedural analysis is done at the moment.
660   if (!A.hasByValOrInAllocaAttr()) {
661     ++ObjectVisitorArgument;
662     return unknown();
663   }
664   PointerType *PT = cast<PointerType>(A.getType());
665   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
666   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
667 }
668
669 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
670   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
671   if (!FnData)
672     return unknown();
673
674   // Handle strdup-like functions separately.
675   if (FnData->AllocTy == StrDupLike) {
676     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
677     if (!Size)
678       return unknown();
679
680     // Strndup limits strlen.
681     if (FnData->FstParam > 0) {
682       ConstantInt *Arg =
683           dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
684       if (!Arg)
685         return unknown();
686
687       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
688       if (Size.ugt(MaxSize))
689         Size = MaxSize + 1;
690     }
691     return std::make_pair(Size, Zero);
692   }
693
694   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
695   if (!Arg)
696     return unknown();
697
698   APInt Size = Arg->getValue();
699   if (!CheckedZextOrTrunc(Size))
700     return unknown();
701
702   // Size is determined by just 1 parameter.
703   if (FnData->SndParam < 0)
704     return std::make_pair(Size, Zero);
705
706   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
707   if (!Arg)
708     return unknown();
709
710   APInt NumElems = Arg->getValue();
711   if (!CheckedZextOrTrunc(NumElems))
712     return unknown();
713
714   bool Overflow;
715   Size = Size.umul_ov(NumElems, Overflow);
716   return Overflow ? unknown() : std::make_pair(Size, Zero);
717
718   // TODO: handle more standard functions (+ wchar cousins):
719   // - strdup / strndup
720   // - strcpy / strncpy
721   // - strcat / strncat
722   // - memcpy / memmove
723   // - strcat / strncat
724   // - memset
725 }
726
727 SizeOffsetType
728 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
729   // If null is unknown, there's nothing we can do. Additionally, non-zero
730   // address spaces can make use of null, so we don't presume to know anything
731   // about that.
732   //
733   // TODO: How should this work with address space casts? We currently just drop
734   // them on the floor, but it's unclear what we should do when a NULL from
735   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
736   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
737     return unknown();
738   return std::make_pair(Zero, Zero);
739 }
740
741 SizeOffsetType
742 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
743   return unknown();
744 }
745
746 SizeOffsetType
747 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
748   // Easy cases were already folded by previous passes.
749   return unknown();
750 }
751
752 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
753   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
754   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
755   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
756     return unknown();
757
758   return std::make_pair(PtrData.first, PtrData.second + Offset);
759 }
760
761 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
762   if (GA.isInterposable())
763     return unknown();
764   return compute(GA.getAliasee());
765 }
766
767 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
768   if (!GV.hasDefinitiveInitializer())
769     return unknown();
770
771   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
772   return std::make_pair(align(Size, GV.getAlignment()), Zero);
773 }
774
775 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
776   // clueless
777   return unknown();
778 }
779
780 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
781   ++ObjectVisitorLoad;
782   return unknown();
783 }
784
785 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
786   // too complex to analyze statically.
787   return unknown();
788 }
789
790 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
791   SizeOffsetType TrueSide  = compute(I.getTrueValue());
792   SizeOffsetType FalseSide = compute(I.getFalseValue());
793   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
794     if (TrueSide == FalseSide) {
795         return TrueSide;
796     }
797
798     APInt TrueResult = getSizeWithOverflow(TrueSide);
799     APInt FalseResult = getSizeWithOverflow(FalseSide);
800
801     if (TrueResult == FalseResult) {
802       return TrueSide;
803     }
804     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
805       if (TrueResult.slt(FalseResult))
806         return TrueSide;
807       return FalseSide;
808     }
809     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
810       if (TrueResult.sgt(FalseResult))
811         return TrueSide;
812       return FalseSide;
813     }
814   }
815   return unknown();
816 }
817
818 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
819   return std::make_pair(Zero, Zero);
820 }
821
822 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
823   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
824                     << '\n');
825   return unknown();
826 }
827
828 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
829     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
830     ObjectSizeOpts EvalOpts)
831     : DL(DL), TLI(TLI), Context(Context),
832       Builder(Context, TargetFolder(DL),
833               IRBuilderCallbackInserter(
834                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
835       EvalOpts(EvalOpts) {
836   // IntTy and Zero must be set for each compute() since the address space may
837   // be different for later objects.
838 }
839
840 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
841   // XXX - Are vectors of pointers possible here?
842   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
843   Zero = ConstantInt::get(IntTy, 0);
844
845   SizeOffsetEvalType Result = compute_(V);
846
847   if (!bothKnown(Result)) {
848     // Erase everything that was computed in this iteration from the cache, so
849     // that no dangling references are left behind. We could be a bit smarter if
850     // we kept a dependency graph. It's probably not worth the complexity.
851     for (const Value *SeenVal : SeenVals) {
852       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
853       // non-computable results can be safely cached
854       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
855         CacheMap.erase(CacheIt);
856     }
857
858     // Erase any instructions we inserted as part of the traversal.
859     for (Instruction *I : InsertedInstructions) {
860       I->replaceAllUsesWith(UndefValue::get(I->getType()));
861       I->eraseFromParent();
862     }
863   }
864
865   SeenVals.clear();
866   InsertedInstructions.clear();
867   return Result;
868 }
869
870 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
871   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
872   SizeOffsetType Const = Visitor.compute(V);
873   if (Visitor.bothKnown(Const))
874     return std::make_pair(ConstantInt::get(Context, Const.first),
875                           ConstantInt::get(Context, Const.second));
876
877   V = V->stripPointerCasts();
878
879   // Check cache.
880   CacheMapTy::iterator CacheIt = CacheMap.find(V);
881   if (CacheIt != CacheMap.end())
882     return CacheIt->second;
883
884   // Always generate code immediately before the instruction being
885   // processed, so that the generated code dominates the same BBs.
886   BuilderTy::InsertPointGuard Guard(Builder);
887   if (Instruction *I = dyn_cast<Instruction>(V))
888     Builder.SetInsertPoint(I);
889
890   // Now compute the size and offset.
891   SizeOffsetEvalType Result;
892
893   // Record the pointers that were handled in this run, so that they can be
894   // cleaned later if something fails. We also use this set to break cycles that
895   // can occur in dead code.
896   if (!SeenVals.insert(V).second) {
897     Result = unknown();
898   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
899     Result = visitGEPOperator(*GEP);
900   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
901     Result = visit(*I);
902   } else if (isa<Argument>(V) ||
903              (isa<ConstantExpr>(V) &&
904               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
905              isa<GlobalAlias>(V) ||
906              isa<GlobalVariable>(V)) {
907     // Ignore values where we cannot do more than ObjectSizeVisitor.
908     Result = unknown();
909   } else {
910     LLVM_DEBUG(
911         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
912                << '\n');
913     Result = unknown();
914   }
915
916   // Don't reuse CacheIt since it may be invalid at this point.
917   CacheMap[V] = Result;
918   return Result;
919 }
920
921 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
922   if (!I.getAllocatedType()->isSized())
923     return unknown();
924
925   // must be a VLA
926   assert(I.isArrayAllocation());
927   Value *ArraySize = I.getArraySize();
928   Value *Size = ConstantInt::get(ArraySize->getType(),
929                                  DL.getTypeAllocSize(I.getAllocatedType()));
930   Size = Builder.CreateMul(Size, ArraySize);
931   return std::make_pair(Size, Zero);
932 }
933
934 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
935   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
936   if (!FnData)
937     return unknown();
938
939   // Handle strdup-like functions separately.
940   if (FnData->AllocTy == StrDupLike) {
941     // TODO
942     return unknown();
943   }
944
945   Value *FirstArg = CS.getArgument(FnData->FstParam);
946   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
947   if (FnData->SndParam < 0)
948     return std::make_pair(FirstArg, Zero);
949
950   Value *SecondArg = CS.getArgument(FnData->SndParam);
951   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
952   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
953   return std::make_pair(Size, Zero);
954
955   // TODO: handle more standard functions (+ wchar cousins):
956   // - strdup / strndup
957   // - strcpy / strncpy
958   // - strcat / strncat
959   // - memcpy / memmove
960   // - strcat / strncat
961   // - memset
962 }
963
964 SizeOffsetEvalType
965 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
966   return unknown();
967 }
968
969 SizeOffsetEvalType
970 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
971   return unknown();
972 }
973
974 SizeOffsetEvalType
975 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
976   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
977   if (!bothKnown(PtrData))
978     return unknown();
979
980   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
981   Offset = Builder.CreateAdd(PtrData.second, Offset);
982   return std::make_pair(PtrData.first, Offset);
983 }
984
985 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
986   // clueless
987   return unknown();
988 }
989
990 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
991   return unknown();
992 }
993
994 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
995   // Create 2 PHIs: one for size and another for offset.
996   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
997   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
998
999   // Insert right away in the cache to handle recursive PHIs.
1000   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1001
1002   // Compute offset/size for each PHI incoming pointer.
1003   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1004     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1005     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1006
1007     if (!bothKnown(EdgeData)) {
1008       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
1009       OffsetPHI->eraseFromParent();
1010       InsertedInstructions.erase(OffsetPHI);
1011       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
1012       SizePHI->eraseFromParent();
1013       InsertedInstructions.erase(SizePHI);
1014       return unknown();
1015     }
1016     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1017     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1018   }
1019
1020   Value *Size = SizePHI, *Offset = OffsetPHI;
1021   if (Value *Tmp = SizePHI->hasConstantValue()) {
1022     Size = Tmp;
1023     SizePHI->replaceAllUsesWith(Size);
1024     SizePHI->eraseFromParent();
1025     InsertedInstructions.erase(SizePHI);
1026   }
1027   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1028     Offset = Tmp;
1029     OffsetPHI->replaceAllUsesWith(Offset);
1030     OffsetPHI->eraseFromParent();
1031     InsertedInstructions.erase(OffsetPHI);
1032   }
1033   return std::make_pair(Size, Offset);
1034 }
1035
1036 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1037   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
1038   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1039
1040   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1041     return unknown();
1042   if (TrueSide == FalseSide)
1043     return TrueSide;
1044
1045   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1046                                      FalseSide.first);
1047   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1048                                        FalseSide.second);
1049   return std::make_pair(Size, Offset);
1050 }
1051
1052 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1053   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1054                     << '\n');
1055   return unknown();
1056 }