Revert "[BrachProbablityInfo] Set edge probabilities at once. NFC."
[lldb.git] / llvm / lib / Transforms / Utils / BreakCriticalEdges.cpp
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block.  This pass may be "required" by passes that
11 // cannot deal with critical edges.  For this usage, the structure type is
12 // forward declared.  This pass obviously invalidates the CFG, but can update
13 // dominator trees.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Transforms/Utils.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 using namespace llvm;
38
39 #define DEBUG_TYPE "break-crit-edges"
40
41 STATISTIC(NumBroken, "Number of blocks inserted");
42
43 namespace {
44   struct BreakCriticalEdges : public FunctionPass {
45     static char ID; // Pass identification, replacement for typeid
46     BreakCriticalEdges() : FunctionPass(ID) {
47       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48     }
49
50     bool runOnFunction(Function &F) override {
51       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
52       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
53
54       auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
55       auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
56
57       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
58       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
59       unsigned N =
60           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
61       NumBroken += N;
62       return N > 0;
63     }
64
65     void getAnalysisUsage(AnalysisUsage &AU) const override {
66       AU.addPreserved<DominatorTreeWrapperPass>();
67       AU.addPreserved<LoopInfoWrapperPass>();
68
69       // No loop canonicalization guarantees are broken by this pass.
70       AU.addPreservedID(LoopSimplifyID);
71     }
72   };
73 }
74
75 char BreakCriticalEdges::ID = 0;
76 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
77                 "Break critical edges in CFG", false, false)
78
79 // Publicly exposed interface to pass...
80 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
81 FunctionPass *llvm::createBreakCriticalEdgesPass() {
82   return new BreakCriticalEdges();
83 }
84
85 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
86                                               FunctionAnalysisManager &AM) {
87   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
88   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
89   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
90   NumBroken += N;
91   if (N == 0)
92     return PreservedAnalyses::all();
93   PreservedAnalyses PA;
94   PA.preserve<DominatorTreeAnalysis>();
95   PA.preserve<LoopAnalysis>();
96   return PA;
97 }
98
99 //===----------------------------------------------------------------------===//
100 //    Implementation of the external critical edge manipulation functions
101 //===----------------------------------------------------------------------===//
102
103 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
104 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
105 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
106 /// the old loop exit, now the successor of SplitBB.
107 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
108                                        BasicBlock *SplitBB,
109                                        BasicBlock *DestBB) {
110   // SplitBB shouldn't have anything non-trivial in it yet.
111   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
112           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
113
114   // For each PHI in the destination block.
115   for (PHINode &PN : DestBB->phis()) {
116     unsigned Idx = PN.getBasicBlockIndex(SplitBB);
117     Value *V = PN.getIncomingValue(Idx);
118
119     // If the input is a PHI which already satisfies LCSSA, don't create
120     // a new one.
121     if (const PHINode *VP = dyn_cast<PHINode>(V))
122       if (VP->getParent() == SplitBB)
123         continue;
124
125     // Otherwise a new PHI is needed. Create one and populate it.
126     PHINode *NewPN = PHINode::Create(
127         PN.getType(), Preds.size(), "split",
128         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
129     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
130       NewPN->addIncoming(V, Preds[i]);
131
132     // Update the original PHI.
133     PN.setIncomingValue(Idx, NewPN);
134   }
135 }
136
137 BasicBlock *
138 llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
139                         const CriticalEdgeSplittingOptions &Options) {
140   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
141     return nullptr;
142
143   assert(!isa<IndirectBrInst>(TI) &&
144          "Cannot split critical edge from IndirectBrInst");
145
146   BasicBlock *TIBB = TI->getParent();
147   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
148
149   // Splitting the critical edge to a pad block is non-trivial. Don't do
150   // it in this generic function.
151   if (DestBB->isEHPad()) return nullptr;
152
153   // Don't split the non-fallthrough edge from a callbr.
154   if (isa<CallBrInst>(TI) && SuccNum > 0)
155     return nullptr;
156
157   if (Options.IgnoreUnreachableDests &&
158       isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
159     return nullptr;
160
161   // Create a new basic block, linking it into the CFG.
162   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
163                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
164   // Create our unconditional branch.
165   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
166   NewBI->setDebugLoc(TI->getDebugLoc());
167
168   // Branch to the new block, breaking the edge.
169   TI->setSuccessor(SuccNum, NewBB);
170
171   // Insert the block into the function... right after the block TI lives in.
172   Function &F = *TIBB->getParent();
173   Function::iterator FBBI = TIBB->getIterator();
174   F.getBasicBlockList().insert(++FBBI, NewBB);
175
176   // If there are any PHI nodes in DestBB, we need to update them so that they
177   // merge incoming values from NewBB instead of from TIBB.
178   {
179     unsigned BBIdx = 0;
180     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
181       // We no longer enter through TIBB, now we come in through NewBB.
182       // Revector exactly one entry in the PHI node that used to come from
183       // TIBB to come from NewBB.
184       PHINode *PN = cast<PHINode>(I);
185
186       // Reuse the previous value of BBIdx if it lines up.  In cases where we
187       // have multiple phi nodes with *lots* of predecessors, this is a speed
188       // win because we don't have to scan the PHI looking for TIBB.  This
189       // happens because the BB list of PHI nodes are usually in the same
190       // order.
191       if (PN->getIncomingBlock(BBIdx) != TIBB)
192         BBIdx = PN->getBasicBlockIndex(TIBB);
193       PN->setIncomingBlock(BBIdx, NewBB);
194     }
195   }
196
197   // If there are any other edges from TIBB to DestBB, update those to go
198   // through the split block, making those edges non-critical as well (and
199   // reducing the number of phi entries in the DestBB if relevant).
200   if (Options.MergeIdenticalEdges) {
201     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
202       if (TI->getSuccessor(i) != DestBB) continue;
203
204       // Remove an entry for TIBB from DestBB phi nodes.
205       DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
206
207       // We found another edge to DestBB, go to NewBB instead.
208       TI->setSuccessor(i, NewBB);
209     }
210   }
211
212   // If we have nothing to update, just return.
213   auto *DT = Options.DT;
214   auto *PDT = Options.PDT;
215   auto *LI = Options.LI;
216   auto *MSSAU = Options.MSSAU;
217   if (MSSAU)
218     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
219         DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
220
221   if (!DT && !PDT && !LI)
222     return NewBB;
223
224   if (DT || PDT) {
225     // Update the DominatorTree.
226     //       ---> NewBB -----\
227     //      /                 V
228     //  TIBB -------\\------> DestBB
229     //
230     // First, inform the DT about the new path from TIBB to DestBB via NewBB,
231     // then delete the old edge from TIBB to DestBB. By doing this in that order
232     // DestBB stays reachable in the DT the whole time and its subtree doesn't
233     // get disconnected.
234     SmallVector<DominatorTree::UpdateType, 3> Updates;
235     Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
236     Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
237     if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
238       Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
239
240     if (DT)
241       DT->applyUpdates(Updates);
242     if (PDT)
243       PDT->applyUpdates(Updates);
244   }
245
246   // Update LoopInfo if it is around.
247   if (LI) {
248     if (Loop *TIL = LI->getLoopFor(TIBB)) {
249       // If one or the other blocks were not in a loop, the new block is not
250       // either, and thus LI doesn't need to be updated.
251       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
252         if (TIL == DestLoop) {
253           // Both in the same loop, the NewBB joins loop.
254           DestLoop->addBasicBlockToLoop(NewBB, *LI);
255         } else if (TIL->contains(DestLoop)) {
256           // Edge from an outer loop to an inner loop.  Add to the outer loop.
257           TIL->addBasicBlockToLoop(NewBB, *LI);
258         } else if (DestLoop->contains(TIL)) {
259           // Edge from an inner loop to an outer loop.  Add to the outer loop.
260           DestLoop->addBasicBlockToLoop(NewBB, *LI);
261         } else {
262           // Edge from two loops with no containment relation.  Because these
263           // are natural loops, we know that the destination block must be the
264           // header of its loop (adding a branch into a loop elsewhere would
265           // create an irreducible loop).
266           assert(DestLoop->getHeader() == DestBB &&
267                  "Should not create irreducible loops!");
268           if (Loop *P = DestLoop->getParentLoop())
269             P->addBasicBlockToLoop(NewBB, *LI);
270         }
271       }
272
273       // If TIBB is in a loop and DestBB is outside of that loop, we may need
274       // to update LoopSimplify form and LCSSA form.
275       if (!TIL->contains(DestBB)) {
276         assert(!TIL->contains(NewBB) &&
277                "Split point for loop exit is contained in loop!");
278
279         // Update LCSSA form in the newly created exit block.
280         if (Options.PreserveLCSSA) {
281           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
282         }
283
284         // The only that we can break LoopSimplify form by splitting a critical
285         // edge is if after the split there exists some edge from TIL to DestBB
286         // *and* the only edge into DestBB from outside of TIL is that of
287         // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
288         // is the new exit block and it has no non-loop predecessors. If the
289         // second isn't true, then DestBB was not in LoopSimplify form prior to
290         // the split as it had a non-loop predecessor. In both of these cases,
291         // the predecessor must be directly in TIL, not in a subloop, or again
292         // LoopSimplify doesn't hold.
293         SmallVector<BasicBlock *, 4> LoopPreds;
294         for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
295              ++I) {
296           BasicBlock *P = *I;
297           if (P == NewBB)
298             continue; // The new block is known.
299           if (LI->getLoopFor(P) != TIL) {
300             // No need to re-simplify, it wasn't to start with.
301             LoopPreds.clear();
302             break;
303           }
304           LoopPreds.push_back(P);
305         }
306         if (!LoopPreds.empty()) {
307           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
308           BasicBlock *NewExitBB = SplitBlockPredecessors(
309               DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
310           if (Options.PreserveLCSSA)
311             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
312         }
313       }
314     }
315   }
316
317   return NewBB;
318 }
319
320 // Return the unique indirectbr predecessor of a block. This may return null
321 // even if such a predecessor exists, if it's not useful for splitting.
322 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
323 // predecessors of BB.
324 static BasicBlock *
325 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
326   // If the block doesn't have any PHIs, we don't care about it, since there's
327   // no point in splitting it.
328   PHINode *PN = dyn_cast<PHINode>(BB->begin());
329   if (!PN)
330     return nullptr;
331
332   // Verify we have exactly one IBR predecessor.
333   // Conservatively bail out if one of the other predecessors is not a "regular"
334   // terminator (that is, not a switch or a br).
335   BasicBlock *IBB = nullptr;
336   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
337     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
338     Instruction *PredTerm = PredBB->getTerminator();
339     switch (PredTerm->getOpcode()) {
340     case Instruction::IndirectBr:
341       if (IBB)
342         return nullptr;
343       IBB = PredBB;
344       break;
345     case Instruction::Br:
346     case Instruction::Switch:
347       OtherPreds.push_back(PredBB);
348       continue;
349     default:
350       return nullptr;
351     }
352   }
353
354   return IBB;
355 }
356
357 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
358                                         BranchProbabilityInfo *BPI,
359                                         BlockFrequencyInfo *BFI) {
360   // Check whether the function has any indirectbrs, and collect which blocks
361   // they may jump to. Since most functions don't have indirect branches,
362   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
363   SmallSetVector<BasicBlock *, 16> Targets;
364   for (auto &BB : F) {
365     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
366     if (!IBI)
367       continue;
368
369     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
370       Targets.insert(IBI->getSuccessor(Succ));
371   }
372
373   if (Targets.empty())
374     return false;
375
376   bool ShouldUpdateAnalysis = BPI && BFI;
377   bool Changed = false;
378   for (BasicBlock *Target : Targets) {
379     SmallVector<BasicBlock *, 16> OtherPreds;
380     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
381     // If we did not found an indirectbr, or the indirectbr is the only
382     // incoming edge, this isn't the kind of edge we're looking for.
383     if (!IBRPred || OtherPreds.empty())
384       continue;
385
386     // Don't even think about ehpads/landingpads.
387     Instruction *FirstNonPHI = Target->getFirstNonPHI();
388     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
389       continue;
390
391     // Remember edge probabilities if needed.
392     SmallVector<BranchProbability, 4> EdgeProbabilities;
393     if (ShouldUpdateAnalysis) {
394       EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
395       for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
396            I < E; ++I)
397         EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
398       BPI->eraseBlock(Target);
399     }
400
401     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
402     if (ShouldUpdateAnalysis) {
403       // Copy the BFI/BPI from Target to BodyBlock.
404       for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
405            I < E; ++I)
406         BPI->setEdgeProbability(BodyBlock, I, EdgeProbabilities[I]);
407       BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
408     }
409     // It's possible Target was its own successor through an indirectbr.
410     // In this case, the indirectbr now comes from BodyBlock.
411     if (IBRPred == Target)
412       IBRPred = BodyBlock;
413
414     // At this point Target only has PHIs, and BodyBlock has the rest of the
415     // block's body. Create a copy of Target that will be used by the "direct"
416     // preds.
417     ValueToValueMapTy VMap;
418     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
419
420     BlockFrequency BlockFreqForDirectSucc;
421     for (BasicBlock *Pred : OtherPreds) {
422       // If the target is a loop to itself, then the terminator of the split
423       // block (BodyBlock) needs to be updated.
424       BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
425       Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
426       if (ShouldUpdateAnalysis)
427         BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
428             BPI->getEdgeProbability(Src, DirectSucc);
429     }
430     if (ShouldUpdateAnalysis) {
431       BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
432       BlockFrequency NewBlockFreqForTarget =
433           BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
434       BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
435     }
436
437     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
438     // they are clones, so the number of PHIs are the same.
439     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
440     // (b) Leave that as the only edge in the "Indirect" PHI.
441     // (c) Merge the two in the body block.
442     BasicBlock::iterator Indirect = Target->begin(),
443                          End = Target->getFirstNonPHI()->getIterator();
444     BasicBlock::iterator Direct = DirectSucc->begin();
445     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
446
447     assert(&*End == Target->getTerminator() &&
448            "Block was expected to only contain PHIs");
449
450     while (Indirect != End) {
451       PHINode *DirPHI = cast<PHINode>(Direct);
452       PHINode *IndPHI = cast<PHINode>(Indirect);
453
454       // Now, clean up - the direct block shouldn't get the indirect value,
455       // and vice versa.
456       DirPHI->removeIncomingValue(IBRPred);
457       Direct++;
458
459       // Advance the pointer here, to avoid invalidation issues when the old
460       // PHI is erased.
461       Indirect++;
462
463       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
464       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
465                              IBRPred);
466
467       // Create a PHI in the body block, to merge the direct and indirect
468       // predecessors.
469       PHINode *MergePHI =
470           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
471       MergePHI->addIncoming(NewIndPHI, Target);
472       MergePHI->addIncoming(DirPHI, DirectSucc);
473
474       IndPHI->replaceAllUsesWith(MergePHI);
475       IndPHI->eraseFromParent();
476     }
477
478     Changed = true;
479   }
480
481   return Changed;
482 }